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Abstract — This paper presents a brief review on re-

cent works on machine intelligence for real-world appli-

cations of robots. To act in a real world environment, a

robot should possess a broad sense of intelligence includ-

ing speech, perception, reasoning, action, etc. In this pa-

per, we particularly deal with the intelligence involving

action or body motion. The intelligence related to robot

action/motion can be classified into two categories: manip-

ulation intelligence and mobility intelligence. The manip-

ulation intelligence means the skill/intelligence of reliably

manipulating objects according to tasks and the mobil-

ity intelligence corresponds to the ability of autonomously

moving, or flying, and or jumping in a natural environ-

ment. Human-robot interaction is another important topic

for real-world applications. In addition to reviewing the

major approaches, this paper also gives an overview on

our efforts in these important topics.

Key words — Machine intelligence, Simultaneous lo-

calization and mapping (SLAM), Medical robots, Human-
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I. Introduction

The objectives of Artificial Intelligence (AI) are to re-

alize human intelligence by computers, robots and other

systems. The area is broad and involves in both scientific

understanding and technological realization of human in-

telligence. The term Artificial Intelligence was invented

by John McCarthy at the second Dartmouth Conference

in 1956[1]. The development of AI has experienced sev-

eral booms and bottoms since that. In recent years, AI is

booming again due to the success of the AlphaGo, which

beat the world champions in 2017. The success stimulated

exciting imagination on futures and potential applications

of AI and led to tremendous research and development ef-

forts.

It should be pointed out that the technologies used by

AlphaGo are mainly reasoning, decision-making, learn-

ing, etc., which purely depend on computing algorithms.

The success is devoted to the significant advancement of

computing power, big data, database, etc. To physically

interact with a real world, physical systems such as robots

need to play more active roles. In addition to intelligence

purely relying on computing, a robot should have the in-

telligence of physically interacting with or changing set-

tings in the real world. Therefore, robots play one of the

most important roles in the development of artificial in-

telligence.

The intelligence that supports physical interactions of

robots with the world is associated with the bodily kines-

thetic intelligence defined by Howard Gardner in his book

Multiple intelligence: theory in practice[2]. The kind of

intelligence involves body or limb movement of a person.

We think that the bodily kinesthetic intelligence for a

robot can be further classified into mobility intelligence

and manipulation intelligence. The mobility intelligence

means the ability of a robot to reliably move in a nat-

ural environment, and manipulation intelligence is the

skills of robots for manipulating objects. When inter-

acting with humans in the physical world, a robot should

also be equipped with intelligence of tracking and recog-

nizing human actions and expressing itself, in addition to

speech. This paper presents a brief review on the research

development in those exciting areas and introduces some

of our efforts as well.

II. Mobility Intelligence

Mobility intelligence enables robots to navigate in a

natural environment. The critical problems in develop-

ing mobility intelligence include design of mobile mecha-

nisms, motion control and navigation. Different mecha-

nisms such as wheels, legs, biomimetic mechanisms, etc.
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have been developed. Motion control is also crucial for

mobile robots, in particular for legged robots. This paper

focuses the discussion on navigation of mobile robots.

Simultaneous localization and mapping (SLAM) is one

of the core technologies for navigation of mobile robots

in unknown environment[3−4]. SLAM is the problem to

jointly estimate the state of a robot equipped with on-

board sensors and the structure of the environment (the

map) that the sensors are perceiving using the sensor in-

formation. SLAM is one of the fundamental problems in

mobile robotics.

A typical SLAM system consists of a front-end that

builds a map from different sensor measurements, a map-

refinement back-end that reduces local errors, and option-

ally a loop closing module to overcome globally accumu-

lated errors. For map refinement, there are two common

approaches: filtering based methods[3] and graph opti-

mization based methods[4]. While the former uses control

inputs or ego-motion sensor measurements for state prop-

agation and exteroceptive sensory observations for state

update in an iterative framework, the graph based meth-

ods jointly minimize the errors originating from all mea-

surements or constraints. For the front-end LIDAR and

vision are commonly used sensing modalities that perceive

the environment.

LIDAR is the mainstream sensor used in the early

works of SLAM[5−8], most of which use filtering based

approaches. To improve the accuracy, state-of-the-art

SLAM systems using LIDAR usually adopt the graph

based approaches, such as LAGO by Carlone et al.[9] and

Cartographer[10] by Google. Carlone et al. demonstrated

that their pose graph optimization has a peculiar struc-

ture in planar scenarios, and exploited this observation

to design the estimation framework: LAGO, which could

reduce the risk of being trapped in local minima, thus

achieving better accuracy as well as improved efficiency.

Cartographer combines scan-to-submap matching with

loop closure detection and graph optimization to achieve

2D SLAM. In the background, all scans are matched to

nearby submaps to create loop closure constraints, which

forms a constraint graph that is periodically optimized.

This system eventually provides real-time mapping and

loop closure at a 5-cm resolution.

Visual SLAM (V-SLAM) estimates the robot states

and environmental structures from images. Depending

on how image data is utilized in constructing the esti-

mation problems, a variety of V-SLAM methods can be

classified into feature-based and direct methods. The

feature-based methods are traditionally the mainstream

approaches in V-SLAM. The idea is to detect feature

points and match them between subsequent frames, and

then to improve the states estimation to minimize the

reprojection errors. Davison et al. proposed the first V-

SLAM system, MonoSLAM[11], using a feature-based fil-

tering framework. V-SLAM using particle filter was also

proposed[12]. An important graph based V-SLAM sys-

tem is PTAM by Klein and Murray[13], which creatively

introduced the idea of running camera tracking and map-

ping in parallel threads, bringing the first real-time perfor-

mance to optimization-based V-SLAM. The ORB-SLAM,

based on the idea of PTAM and proposed by Mur-Artal

et al.[14], is currently considered as the state-of-the-art

of feature based SLAM method. ORB-SLAM introduced

an automatic map initialization with model selection on

homography or fundamental matrix based ego-motion cal-

culated using RANSAC. It used the ORB feature detec-

tor and descriptor instead of the FAST corners and im-

age patches in PTAM, improving the robustness of image

tracking and feature matching under scale and orientation

changes. Furthermore, a visual bag-of-words based loop

closing module was implemented in parallel to tracking

and local mapping threads. To handle large-scale maps,

multi-scale mapping strategies were introduced, including

a local graph for pose bundle adjustment, a co-visibility

graph for local bundle adjustment, and an essential graph

for global bundle adjustment after loop closure.

Direct methods skip the feature extraction step and

work with the raw pixel intensities. Specifically, the

states are estimated by minimizing the photometric er-

rors, i.e. the pixel intensity differences. DTAM by New-

combe et al.[15] is a dense-direct system which exploits all

the pixel values in the image, even from areas where gradi-

ents are small. Detailed textured depth maps at selected

keyframes are estimated to produce a surface patchwork

with millions of vertices, and a global spatially regularized

energy function is minimized in an optimization frame-

work. Although it can outperform feature-based meth-

ods in scenes with poor texture and motion blur, a GPU

is required for real-time performance. Semi-dense meth-

ods like LSD-SLAM[16] can run real-time on a CPU, by

only estimating depth at pixels only near strong-gradient

boundaries. The tracking is performed by SE(3) image

alignment using a coarse-to-fine algorithm with a robust

Huber loss. The map optimization is executed using con-

ventional graph optimization. Exploiting sparsity further,

a direct sparse method, DSO, was proposed by Engel et

al[17]. This method does not consider the smoothness

prior used in other direct methods but carries out even

sampling of pixels throughout the images. DSO also con-

siders lens vignetting, exposure time, camera calibration

and non-linear response functions. DSO runs faster than

both feature based and semi-dense direct methods. Mean-

while, there are also hybrid methods that combines the

strategies of feature based and direct methods. SVO by

Forster et al.[18] is a semi-direct approach that tracks and

triangulates pixels characterized by high image gradients
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by direct methods, but jointly optimizes structure and

motion using feature-based methods. Semi-direct meth-

ods avoid extracting features in every frame during track-

ing, but maintains the good invariance to viewpoint and

illumination changes of image features in keyframes, and

hence demonstrated efficient and robust performance.

Apart from the traditional model based methods, in

recent years SLAM methods were developed based on

learning approaches or semantic information. The fol-

lowing several directions can be observed in this area.

Firstly, at the level of landmarks, semantic objects rather

than simple 3D points are used to represent the environ-

mental structure and form the graph, as performed by

SLAM++[19]. Secondly, depth information can be learned

directly from single monocular images using deep convolu-

tional neural networks (CNN)[20]. Finally, at the whole-

graph level, deep CNN feature descriptions are utilized

to do loop closure detection[21]. Semantic SLAM is still

under enthusiastic investigation.

To achieve more accurate and robust estimation, vi-

sion is usually fused with other sensors. One popular

combination is to use RGBD (RGB image + Depth) sen-

sors, the most famous one of which is Microsoft Kinect.

ORB-SLAM2[22] extends its original monocular version

to both stereo and RGBD modalities, offering the simi-

lar map reuse, loop closing, and relocalization capabilities.

ElasticFusion[23] achieves real-time dense localization and

mapping without common pose graph optimization, us-

ing dense frame-to-model camera tracking and windowed

surface-based fusion coupled with frequent model refine-

ment through non-rigid surface deformations. Fig. 1

shows the dense 3D structure of an office using the RGBD

SLAM. RGBD SLAM, however, due to the restricted

working range of depth sensors, is not applicable in large-

scale applications.

Fig. 1. The constructed office model using RGBD SLAM.

Visual and inertial or odometry measurements offer

complementary properties for fusion, and visual inertial

SLAM (VI-SLAM) has been an active research topic in re-

cent years. The MSCKF, namely Multi-State Constraint

Kalman Filter[24], represents an important contribution

in the area of filtering-based VI-SLAM. This approach

uses nonlinear triangulation of landmarks observed from

a set of camera poses over time to determine their po-

sitions so that the landmark positions are not included

in the state vector in the EKF update. The state-of-

the-art graph optimization based method is OKVIS by

Leutenegger et al.[25], which uses a rigorously probabilis-

tic cost function defined on the re-projection errors of

landmarks and the inertial terms. To ensure real-time

operation, the optimization is limited to a bounded win-

dow of keyframes through marginalization, and the consis-

tency in the marginalization is maintained by using first-

estimate Jacobians. Mur-Artal et al.[26] used the simi-

lar optimization framework to OKVIS, and additionally

added the capability to close loops and reuse a map of

an already mapped environment. Foster et al.[27] comple-

mented the inertial measurement propagation model used

in graph optimization, by introducing a pre-integration

theory that properly addresses the manifold structure

of the rotation group including its noise, which can be

seamlessly integrated into a graph-based visual-inertial

pipeline to improve both the efficiency and accuracy.

(a)

(b)

Fig. 2. (a) The graph implemented in the system;

(b) The overall structure of the system.

To apply SLAM methods to real-world applications
[28], the estimation accuracy and robustness remain chal-

lenging. In real-world applications, customization of the

algorithm with the nature and constraints of the problem

is important. For this, we developed an odometry-vision

based SLAM system for ground vehicles. Unlike most vi-
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sual SLAM systems modeling the vehicle poses in the gen-

eral SE(3) space, we utilize the planar motion constraints

of ground vehicles as system priors and propose a novel

SE(2)-constrained SE(3) pose parameterization method.

In this approach, a graph optimization framework is built

to estimate the vehicle poses and the environmental land-

mark positions simultaneously. As validated by real-world

experiments, our method produced better accuracy than

the previous ones.

As shown in Fig. 2(a), we implemented four types

of constraints in the graph optimization, including 1)

the feature based constraint which utilizes the measure-

ment of the detected image feature locations; 2) the pla-

nar motion constraint modeled by projecting the SE(3)

pose to a virtual SE(2) plane but allowing certain per-

turbations of motion around the plane; 3) the odome-

try based constraint between two consecutive keyframes;

and 4) the co-visible map points based constraint between

two keyframes that observe a bundle of same landmarks.

These constraints are generated and optimized in a real-

time system as illustrated in Fig. 2(b), which runs in three

parallel threads. The tracking thread takes in the sensor

data of images and odometry measurements, detects and

tracks image features and generates initial values for the

graph optimization. The local mapping thread performs

the optimization on a local map, which consists of cer-

tain number of latest keyframes and their observed map

points. To reduce accumulated errors, the loop closing

thread detects whether the vehicle visits a place it has

visited before, and corrects the whole pose graph if so.

The proposed SLAM system is tested on a forklift AGV

as shown in Fig. 3(a). The AGV is equipped with 2

SICK encoders and one Fizoptika fiber optic gyro to gen-

erate odometry measurement, and one PointGrey cam-

era to capture images of the ceiling at 25 Hz. The sys-

tem can run in real time on an Intel i7 laptop CPU. We

tested the algorithm in an industrial warehouse of around

40 × 60 m2 × 6 m, named Dataset Warehouse. To vali-

date the better performance of our system, we compare

it against one state-of-the-art visual SLAM method, e.g.

ORB-SLAM.

Fig. 3(b) shows one example of the feature tracking

results in real time, and Fig. 3(c) demonstrates the map-

ping result in the Dataset Room. The mapping result

indicates that the keyframes are constrained to a plane

as expected. The statistical results are demonstrated in

Fig. 4. It should be noted that the z-coordinates es-

timated by our method is well constrained around zero,

which conforms to the real indoor environments, while

ORB-SLAM gives deviating values. Overall, the results

by our method exhibit much better accuracy and smaller

upper limit of errors. In terms of Root-Mean-Square of

the errors (RMSE) in the estimated locations, the results

of our method yield one-loop accuracy of around 0.086%,

which is applicable in many industrial indoor navigation

tasks.

(a) (b)

(c)

Fig. 3. (a) The AGV platform; (b) Image features tracked;

(c) the map constructed.
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Fig. 4. Estimated z-coordinates and translation errors

in the warehouse.

III. Manipulation Intelligence

Manipulation intelligence for a robot includes the ca-

pability and skills of grasping, transporting, orienting, po-

sitioning, and assembling objects using hands. The re-

search topics include design of robot hands, grasp plan-

ning, and manipulation planning and control. Designs of

robot hands are certainly crucial in performing manipu-

lation tasks, but in this paper we focus the discussions on

planning and control.

Grasp planning is a problem of planning the grasp

points faces of a robot on an object. When the posi-

tion and orientation of a rigid object to be grasped are

known, many literatures can be found on planning of the

stable grasps using parallel grippers and multi-fingered

hands[29−36]. There are still two challenging problems in

this area: grasp planning on deformable objects and ro-

bust grasp of randomly positioned objects. Grasp plan-

ning on soft objects is challenging due to the difficulty of
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modeling their deformation and quantitatively defining a

stable grasp on them. A possible method to solve grasp

planning of soft objects could be to use learning from

human-intelligence. By using a dataset to train a stable

grasp network based on deep learning or other methods,

it could be possible for robots to know the grasp imme-

diately. The robust grasp of randomly positioned objects

involves in sensing and perception, and grasp planning in

a natural environment. The famous Amazon challenges

are to grasp both soft and rigid objects in store settings.

Sensing is to measure 3D geometry and position of an

object in a real world, and the measurement accuracy is

crucial for success planning and execution of the grasping

tasks. The accuracy for successful grasping is at the level

of 1-2 millimeters. 3D measurement is an old problem

in computer vision. Stereo vision provides a simple solu-

tion, but its reliability and low accuracy are not suitable

for real world applications. The method using structured

light provides a solution for accurate 3D measurement,

but its computational cost is a burden for real-time appli-

cations. We have recently developed a system that com-

bines stereo vision with structured light for real-time and

precise 3D measurement[37]. The system can generate 3

million points with an accuracy of 20 micro meters at a

speed of 50fps. Fig. 5 shows the system and the point

clouds captured by it.

(a) (b)

Fig. 5. (a) The real-time 3D imaging system; (b) The point

clouds captured by the system.

Deforming soft objects using robots is highly de-

manded in many industrial and service applications such

as surgery, food processing, cloth handling, soldering and

assembly of flexible PCBs, etc.[35−39]. The major ob-

stacles to robotic deformation control include kinematic

and dynamic modeling of soft objects, which is crucial to

the controller design and stability analysis. The defor-

mation of a soft object depends on not only the materi-

als but also its geometry, boundary conditions, etc. De-

formation control has been studied since early 1990s for

their many potential applications in industry and other

sectors[35−40]. Sun and Liu studied modeling, position

control and impedance control of flexible beam using mul-

tiple robots[41]. They proposed a simple and effective

controller for regulating position of the beam without

using any deformation or model, and proved the stabil-

ity based on the deformation model. They further ex-

tended the controller to position control of a general flex-

ible object[42]. It should be pointed out that they con-

trol position of the object rather than the deformation.

Most of existing controllers for explicit deformation con-

trol of soft objects is designed on the basis of a defor-

mation model. Provided that the model parameters are

identified, the controller in[43] controls the shape of a rhe-

ological object using different approaches in the elastic-

ity and plasticity phases. Shibata and Hirai[44−45] devel-

oped model-free methods for controlling one dimensional

linear deformation of soft objects. We also designed a

controller for controlling deformation of a 2D beam us-

ing two manipulators[46]. However, the controllers can

be hardly extended to general 2D or 3D deformation

control. There are works on robotic control of 2D or

3D deformation based on different approximated mod-

els on the deformation. For example, based on an ap-

proximated model, Hirai and his group proposed vision-

based approaches to indirectly control deformation of a

soft object by controlling a number of points of interest

on the image plane of the vision system[47−48]. The work

in [49] is similar. Tokumoto and Hirai, in [50], further

investigated the problem of shaping food dough using a

forming machine subject to known deformation param-

eters of the object. In [51], Das and Sarkar employed

the finite element model (FEM) to design the controller

for deforming the shape of a body by multiple manip-

ulators. The difficulties in using a FEM model include

identification of the physical parameters and high com-

putational cost. Zacharia et al.[52] investigated vision-

based cloth-handling problems in which dynamic inter-

actions between cloth and a robot can be neglected for

small mass of cloth. Foresti and Pellegrino[53] studied

vision-based grasping of deformable objects, which is dif-

ferent from manipulation. The controllers in [54− 58] are

based on an exact deformation model and a model on in-

teraction forces between the robots and the object. The

work[59] investigated real-time tracking of deformation of

objects using an eye-in-hand system, but did not consider

the control problem. The stability can be hardly proven

for the trajectory tracking controller of a flexible plate

based on the neural network[60]. An essential procedure

in robotic surgery is to manipulate soft tissues, and hence

efforts are being extensively made to sensing, modeling

and manipulating soft tissues[61−64]. Due to difficulties

in deformation modeling, the research on robotic manip-

ulation of soft tissues is still in the preliminary stage and

there is no effective solution to this difficult problem.

An important effort being made by us is to design a

model-less deformation controller using visual servoing.

Visual servoing is an approach of controlling robot mo-

tion using visual information captured by vision system of

the robot[65−71]. This approach is similar to what human

does. We can easily deform a soft object as we want just



6 Chinese Journal of Electronics 2018

by observing deformation of the object using eyes. The

objective of our effort is to develop intelligence similar

to human for manipulation of soft objects. Vision-based

deformation control is illustrated in Fig. 6. A robot ma-

nipulator is to manipulate a soft object to a desired shape

with assistance of a vision system, which can be an either

2D or 3D system. There are several critical issues in con-

trolling the deformation: description or representation of

the shape, kinematic and dynamic model of the deforma-

tion, controller design, and stability analysis.

Fig. 6. Deformation control of soft objects using visual feedback.

As mentioned previously, it is difficult to obtain a

model for modeling the deformation kinematics and dy-

namics, so deformation control without models is highly

desirable. When the models are not used, it is neces-

sary to develop algorithms to estimate the relationship

between robot motion and deformation of the object, i.e.

the deformation Jacobian matrix. As for shape descrip-

tion, it is not trivial to give a complete representation of

the 3D shape of a soft object. Moreover, since a soft ob-

ject is of an infinite number of DOF, it is not possible to

deform a 3D surface to an arbitrary shape using a manip-

ulator with a limited number of active joints. It is only

possible to control deformation of a soft object at local

areas or points of interest, which leads to a shape with

the minimum deformation energy. We proposed to intro-

duce a shape descriptor s(t) to represent the deformation

of interest, which could be coordinates of a number of

feature points, centroids of areas, angles between lines,

curvatures, etc. Global features such as contour of the

projection of a soft object can be also used as the shape

descriptor.

Fig. 7. The block diagram of the vision-based deformation control.

Fig. 7 shows the block diagram of a model-free de-

formation controller using the shape descriptor. Vector

s(t) is a shape descriptor and sd is the desired descriptor

corresponding to the desired shape. An on-line estima-

tor needs to be developed to estimate the deformation

Jacobian matrix, which relates the deformation and the

robot’s motion as follows:

ṡ(t) = Jsẋ(t) (1)

where represents the velocity of the end-effector of the

manipulator. Navarro-Alarcon and Liu[72] proposed to

employ the Broyden formula to estimate the deformation

Jacobian matrix from 2D visual feedback so as to achieve

model-free regulation of the feature points on the image

plane[72] :

ĴT
s (t) = Ĵᵀ

s (t−∆t) + Γ
∆s(t)− Ĵᵀ

s (t−∆t)∆x(t)

xᵀ(t)x(t)
(2)

where Gamma is a positive-definite adaptive gain. This

algorithm iteratively estimates the deformation Jacobian

matrix without knowing any deformation model. The

concern is that the iterative estimation may stop at local

minimums and hence the stability cannot be rigorously

proved. Another estimator was developed based on the

assumption that the deformation is approximated by non-

linear functions of position x(t) of the end-effector of the

robot at qusai-static motion[73]. That is, the descriptor

s(t) is approximately modeled as

s(t) = αb(x(t)) (3)

where b(x(t)) ∈ R3, being a known polynomial vector

functions of x(t). α is a constant m × 3 coefficient ma-

trix, where m is the dimension of s(t). Eq. (3) can be

written as

s(t) = W (t)θ1 (4)

where θ1 is a constant parameter vector corresponding to

α, and matrix W (t) does not depend on the parameters

θ1. With this approximation, for any vector γ,

Jᵀ
s (t)γ = Ys(x(t),γ)θ1 (5)

where Ys(x(t),γ) is the regression matrix. Define the de-

formation error as follows:

∆s(t) = s(t)− sd (6)

The deformation Jacobian matrix is estimated by estimat-

ing the parameters θ1 on-line. Let θ̂1 be an estimation of

θ1 and the corresponding estimation of the deformation

Jacobian matrix be Ĵᵀ
s (t). Furthermore,

(
Jᵀ
s (t)− Ĵᵀ

s (t)
)
K∆s(t) = Ys(x(t))∆θ1(t) (7)
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where ∆θ1(t) = θ̂1(t) − θ1, being the estimation errors.

The controller is designed as follows:

ẋ(t) = −KĴᵀ
s (t)∆s(t) (8)

where K is a positive-definite gain matrix. Substituting

the controller (8) into eq. (1) leads to:

ṡ(t) = −Js(t)KJ
ᵀ
s (t)∆s(t)+Js(t)K

(
Jᵀ
s (t)− Ĵᵀ

s (t)
)

∆s(t)

(9)

(a)

(b)

(c)

Fig. 8. (a) Deformation control experiments conducted in our lab; (b)

Experiments using an industrial arm; (c) Experiments using the da

Vinci research kit.

Based on the closed-loop system, the unknown param-

eters are estimated by:

˙̂
θ1 = −Γ−1Y ᵀ

s (x(t))Js(t)∆s(t) (10)

where Γ is a positive-definite adaptive gain. The asymp-

totic stability of the system can be proved by introducing

the following positive-definite function:

V =
1

2
∆sᵀ(t)∆s(t) +

1

2
∆θᵀ1 (t)∆θ1(t) (11)

From eqs. (9) and (10), it is possible to obtain

V̇ = ∆sᵀ(t)Js(t)KJ
ᵀ
s (t)∆s(t) (12)

Using the Barbalat Lemma, it is possible to prove the con-

vergence of the deformation error when the matrix Js(t)

is full rank. The controller was further extended to con-

trol of 3D positions of the feature points of a soft object

by coordination of multiple robots[74]. An energy-based

method was also developed to estimate the deformation

Jacobian matrix using the visual deformation flow other

than the visual displacements. In a recent work[75], we

proposed to use the Fourier coefficients of the 2D con-

tour of an object as the visual features to control the

2D deformation. Fig. 8 shows the deformation control

experiments using an industrial arm and the da Vinci

research kit[76−77]. The experiments conducted by us

demonstrated good performance of the model-free visually

servod controller for deformation control of soft objects.

IV. Intelligence for Human-Robot
Interactions

Human-robot interaction (HRI) is crucial for robots

co-working with humans in an environment. HRI involves

two aspects: recognition of human actions/behaviors and

expression of robot’s ideas, etc. to humans. While the

second topic is certainly important, this paper focuses the

discussions to recognition of human actions.

Human action recognition has attracted lots of atten-

tion from different research fields, such as computer vi-

sion, robotics, etc. for its various potential applications

ranging from elderly caring robots to surveillance. Ac-

tion recognition was first studied based on RGB video

inputs[78−79]. The research is alleviated to 3D action

recognition by the development of the low-cost and real

time depth cameras such as the Kinect sensor provid-

ing both color and depth images. Shotton[80] proposed

a method for calculating 3D coordinates of the human

skeleton using depth images. Since then, research of

action recognition based on skeleton data has become

popular[81−86]. Compared with color images, skeleton

data is more robust to changes of the view and the light

conditions. This paper uses dangerous behavior recogni-

tion of a child as the example to review the relevant works

and demonstrate our efforts in this area as well. Fig. 9
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shows the overall design of the system for detecting dan-

gerous behaviors using a Kinect sensor. The RGB-D im-

ages and the human skeleton data of the Kinect sensor are

employed to detect the dangerous objects, track motion

and pose of the child, and recognize his/her dangerous

behaviors.

Fig. 9. The design of the dangerous behavior detection system.

One of the key issues in the system is to estimate

pose of a child. Human pose estimation has been investi-

gated for decades and most early research efforts were fo-

cused on locating the joints using 2D RGB images[87−91].

With the availability of low-cost depth cameras, extract-

ing human skeletons from depth images become popu-

lar. Schwarz et al.[92] proposed a human skeleton tracking

method from depth data using geodesic distances and op-

tical flow. Shotton et al.[80] studied real-time tracking of

a skeleton model with 25 joints from a single depth image

using a randomized decision forests algorithm. This ap-

proach has been applied to Kinect v2, a commercial sensor

of the MicroSoft. However, motion limits of human joints

and occlusions are not taken in account.

With the success of convolution neural network (CNN)

in image recognition and classification, various CNN-

based methods have been developed for skeleton pose es-

timation with better performance than traditional meth-

ods. Tompson et al.[93] used monocular images to esti-

mate human pose based on a hybrid architecture com-

posed of a deep CNN and a Markov Random Field

(MRF). A heat-map representing the per-pixel likelihood

for key joint locations of the human skeleton is generated

from a deep ConvNet in this method. Wei et al.[94] in-

troduced a method to recurrently use the generated heat-

map and original images for multi-stages training. Their

method has improved the performance significantly.

No matter what methods are used, robust and stable

2D skeleton pose tracking is yet a problem to be solved

in computer vision and robotics. Invalid poses are gener-

ated from time to time, especially when occlusions occur.

To avoid invalid skeleton estimation, Akhter et al.[95] col-

lected a motion capture dataset including an extensive va-

riety of stretching poses and studied how joint-limits vary

with human pose. An over-completed pose dictionary is

built based on the dataset, and then employed to gen-

erate an estimated pose with a parametrization method.

It is computationally expensive and costly to collect all

possible stretching poses. Instead of extensive data col-

lection, the joint limits can be actually estimated based

on a kinematics model and the bio-constraints of human

body.

In practice, skeleton data obtained from Kinect often

contains a lot of errors, especially in the case of occlu-

sions, as shown in Fig. 10. The skeleton model used in

Kinect is not a strictly bio-constrained kinematics model.

Here the bio-constraints mean the kinematic parameters

of human body, such as joint motion limits, etc. Using

the constraints will help ensure generation of valid poses.

Fig. 10. Corrupted skeletons obtained from Kinect sensor.

We developed a method to recover the skeleton from

the corrupted one from the Kinect. Fig. 11 shows the

framework of the method. Kinect sensor generates two

data streams: RGB stream and skeleton stream. The

RGB stream is fed into a convolutional neural network to

estimate the 2D poses by the method in [94] . A confi-

dence value C1 of the RGB-based prediction is calculated

by averaging the confidence values of all the predicted

joints. The skeleton data is fed into an error detection

module for detecting the error joints. Another confidence

value C2 for the skeleton data is calculated as a ratio be-

tween the number of the correct joints number and the

total number of the joints. The two skeletons are fused

based on the confidence values. Then the final 3D pose

is generated by optimally fitting the fused skeleton with

a standard human skeleton model.

Fig. 11. The framework of proposed method that combines

CNN and skeleton fitting.

An experimental result of this approach is shown in

Fig. 12. The left picture shows the skeleton obtained

from Kinect where the upper body is corrupted due to

occlusion. As shown in the right picture of Fig. 12, the

occluded left arm was estimated and the skeleton was re-

covered by the proposed approach. The results confirmed
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that bio-constraints helped extract human skeleton more

robustly.

Fig. 12. Left: the original skeleton data, and right: the

recovered skeleton.

Take the dangerous behavior of touching electrical

sockets by a child in an indoor scenario as the example.

Detection of the target object, i.e. electrical sockets, is

another crucial technical problem. The state-of-the-art

method for object detection uses the deep learning algo-

rithms. The most classical algorithm is the RCNN se-

ries: RCNN[96] , fast-RCNN[97] , and faster-RCNN[98] .

We can regard this type of methods as classification of

many sliding windows using full convolution. There are

also end to end object detection works, such as YOLO[99]

and SSD[100] . In order to apply to a three-dimensional

case, the inventor of the RCNN, Girshirk[101] extended

their method to the depth image, and concluded that the

raw depth image, as an input of the network, would pro-

duce better results than using depth features. Song[102]

used the 3D reconstruction method to obtain the TSDF

model of the scene and train it through a relatively shal-

low region proposal network. However, it produced poor

accuracy for small objects and hence is not suitable for

detecting the indoor sockets.

In the detection module, we used YOLONet2[103] net-

work structure. For the feature extraction part, the

network is based on the Darknet-19 basic classification

model, including 19 full convolution layers and 5 max-

imum pooling layers. Darknet-19 requires 5.58 billion

operations to process a photo. Like VGG, the network

uses more convolution kernels, and doubles the number of

channels after each pool. The network employs the global

average pooling method to predict, and places the con-

volution kernel between the convolution kernels to com-

press the features. In addition, we used batch normal-

ization to stabilize the model, speed up the convergence

rate, and regularize the model. After using ImageNet to

pre-train, we modified it to a detection network. After

removing the output layer of the last convolution kernel,

adding two layers of convolution kernel, and implementing

a passthrough layer, the output in the 16th layer convolu-

tion layer of Darknet-19 and the last convolution layer are

concatenated. The passthrough layer superimposed high

and low-resolution feature maps according to adjacent fea-

tures at different channels. After the feature is concate-

nated, the fused feature map passes through a layer of

convolution kernel. Finally, we obtain the location and

category of the object.

In the filtering tracker module, we use the correlative

filter to predict and locate the object. In this applica-

tion, the child in the scene will be an interference to the

measured socket, resulting in a fluctuated detection rate.

We use the correlative filtering method to solve the prob-

lem. Relevance is mainly used to describe the relationship

between the two factors. For the detection window, we

need to find a filter to achieve the maximum response in

the detection window. In the time domain, this calcula-

tion is a convolution, which is time consuming, while in

the frequency domain the calculation becomes a matrix

pixel-wise multiplication. Therefore, we can find the de-

sired filter in the Fourier frequency domain to maximize

the response.

The task is to find an expected filter :

H∗ =
G

F
(13)

where Gi is a Gaussian kernel and Fi is an image

patch in the frequency domain. Considering the problem

of the attitude transformation and update of time series,

we take m time-sequence detection windows as references

to improve the filter robustness,

min
H∗

m∑
i=1

|Fi ◦H∗ −Gi|2 . (14)

By deriving every element in filter , we have,

∂

∂H∗
wv

m∑
i=1

|FiwvH
∗
wv −Giwv|2 = 0 (15)

In details, we have,

∂

∂H∗
wv

m∑
i=1

(FiwvH
∗
wv −Giwv) (FiwvH

∗
wv −Giwv)

∗
= 0

(16)

∂

∂H∗
wv

m∑
i=1

(FiwvH
∗
wv) (FiwvH

∗
wv)

∗ − (FiwvH
∗
wv)G∗

iwv−

G∗
iwv (FiwvH

∗
wv)

∗
+GiwvG

∗
iwv = 0

(17)

Computing the partial derivatives leads to∑
i

[FiwvF
∗
iwvHwv − FiwvG

∗
iwv] = 0 (18)

Therefore, we have Hwv as follows:

Hwv =

∑
i FiwvG

∗
iwv∑

i FiwvF ∗
iwv

(19)
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Finally, we rewrite the expression in matrix form,

H =

∑
i FiG

∗
i∑

i FiF ∗
i

(20)

Gi is a Gaussian kernel, and the initial Fi can be ob-

tained by the random affine transformation. To improve

the robustness of the filter to deformation and illumina-

tion, and the computational efficiency, we separate the

template update strategy into A and B:

H∗
i =

Ai

Bi
(21)

Ai = ηFiG
∗
i + (1− η)Ai−1 (22)

Bi = ηFiF
∗
i + (1− η)Bi−1 (23)

For the depth image of the scene, we have projected the

coordinates from the registration mapping to the camera

coordinate. For each point in the registration map, we

map it to a 3-dimensional vector.

Pi = [xi yi zi] (24)

For a single patch j with size of m× n in the registration

map, we first calculate the mean value of a patch with a

size of m× n× 3, and then the offset matrix K from the

mean value:

K =

[Pi −

xcyc
zc


m×n

(25)

Fig. 13. The detection results: normal light (top left); dim light

(top right); small objects (bottom left); occlusion (bottom right).

After regularizing K, we achieve the approximate sur-

face feature of the object. The feature has three coor-

dinates x, y, and z with respect to the camera coordi-

nate frame. We use the feature maps in the y-direction

(height) and z-direction (depth) and calculate the ratio of

the peak and the adjacent peak (PSR) to judge the sta-

tus of sockets. When the center of the object detection

area moves forward, the z-direction changes significantly,

and the PSR is greatly reduced, we consider the socket

in an occlusion state. When the motion of the center

point of the object detection area and the change in the

z-direction are not obvious, and the PSR significantly re-

duced, we consider the socket is in a moving state. When

the motion of the center point of the object detection area

and the change in the z-direction are not obvious, and the

change of the PSR is not large, we consider that the socket

does not change. In addition, the filter templates refresh

every 40 frames.

As shown in Fig. 13, by pre-processing the image, such

as random cropping and color shifting, we could cope with

problems due to various illumination changes and partly

occlusions. However, to detect small objects, especially

the sockets on the wall, the algorithm cannot meet the

requirements. Thus, we applied a trick that crops the

original image into 4 parts and then used non-maximal

suppression to deal with redundant detection bounding

boxes. The results are shown in Fig 14. We have carried

out experiments in which a child is to touch nine sockets

five times in four different scenarios. The total detection

rate was 86.7% and the details are given in Table 1. The

failures occurred mainly when the sockets were small seen

from the camera or occluded. More efforts must be made

to improving the success rates.

Fig. 14. The original image (top left); the cropped image (top right);

the detection results (bottom left); the detection results with

non-maximum suppression (bottom right).

Table 1. The experiments on touching sockets

Area Socket True False Accuracy

1

1 5 0 100%

2 5 0 100%

3 4 1 80%

2
4 3 2 60%

5 4 1 80%

3
6 5 0 100%

7 5 0 100%

4
8 4 1 80%

8 4 1 80%

V. Conclusions

This paper presents a short review on robot intelli-

gence for real world applications, in particular on the in-

telligence involving action or body motion. Specifically,

we reviewed the works on simultaneous localization and
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mapping, manipulation of soft objects, and human ac-

tions tracking and recognition. Although some important

progress is being achieved to those important topics, a lot

of efforts must be made to improvement of performance

of the approaches including the reliability, the robustness

to noises or disturbances, the accuracy, the real-time effi-

ciency in order to be applicable in real worlds. Our efforts

in those areas were also briefly introduced.
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