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View-Invariant Human Action Recognition Based
on a 3D Bio-Constrained Skeleton Model
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Abstract— Skeleton-based human action recognition has been
a hot topic in recent years. Most existing studies are based
on the skeleton data obtained from Kinect, which is noisy and
unstable, in particular, in the case of occlusions. To cope with
the noisy skeleton data and variation of viewpoints, this paper
presents a view-invariant method for human action recognition
by recovering the corrupted skeletons based on a 3D bio-
constrained skeleton model and visualizing those body-level
motion features obtained during the recovery process with
images. The bio-constrained skeleton model is defined with two
types of constraints: 1) constant bone lengths and 2) motion limits
of joints. Based on the bio-constrained model, an effective method
is proposed for skeleton recovery. Two types of new motion
features, the Euclidean distance matrix between joints (JEDM),
which contains the global structure information of the body, and
the local dynamic variation of the joint Euler angles (JEAs) are
used in describing human action. These two types of features
are encoded into different motion images, which are fed into a
two-stream convolutional neural network for learning different
action patterns. The experiments on three benchmark datasets
achieve better accuracy than the state-of-the-art approaches,
which demonstrates the effectiveness of the proposed method.

Index Terms— Human action recognition, view-invariant,
CNN, skeleton recovery, bio-constrained skeleton model.

I. INTRODUCTION

HUMAN action recognition has attracted lots of academic
efforts for many years because of its applications in

human-computer interaction, gaming, video surveillance, etc.
However, it is still a challenging task for two reasons: 1) the
complex spatial-temporal process of human behaviors; 2) vari-
ation of the environment and recording settings [1], including
the background of image, occlusion, and viewpoint. Most early
works concentrated on analyzing human actions based on RGB
images. However, features extracted from color sequences are
susceptible to illumination and the appearance of the human
body, as well as lack of motion information in depth direction.
With the development of 3D sensors, such as Kinect, 3D
information of the human body can be captured at a low
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cost and human skeleton can be estimated in real time, which
boosts the research on human action recognition significantly.
Depth images simplify the segmentation of the human body
from the background but suffer from problems of noisy data
and varying presentations in the images when observing from
different directions. Therefore, human action recognition based
on skeleton data is gaining increasing attention in recent years.
As Johansson [2] mentioned, the skeleton is one of the most
effective ways to represent human actions.

Existing skeleton-based action recognition methods usually
extract some view-invariant features, such as the displacement
of joints within one frame or between frames [3], the his-
togram of joint orientations [4], and some higher level features
like Lie group [5] and the covariant matrix of joints [6].
Despite the variety of features, most methods use skeleton
data captured by the Kinetic sensor, which is usually noisy
and unstable particularly in the case of occlusions. As shown
in Fig. 2, varying length of bones and violating joint motion
limits are two common problems. In Kinect, the joint positions
are determined according to the pixel features in a single
depth image [7] without applying rigid structure constraints
compulsively. As a consequence, the estimated skeletons are
often corrupted, which will further affect the human action
recognition. In order to consider joint angle limits in the 3D
pose reconstruction, Akhter et al. [8] collected a large motion
capture dataset of stretching poses to study how joint limits
change with different poses and generated an over-complete
pose dictionary. The study based on a large dataset is high
cost and low efficiency. In the proposed method, the joint angle
limits are considered based on some simple medical data from
neutral zero method [9].

Besides noisy skeleton and feature extraction, the repre-
sentation of spatio-temporal information of human action is
also an open problem. Early works recognized human actions
by using hand-crafted features and temporal models [4], [5].
Since the success of deep learning methods in image
processing, a lot of methods have been proposed based
on the recurrent neural networks (RNNs) and the convolu-
tional neural networks (CNNs) for human action recogni-
tion recently [10]–[23]. RNN has advantages in modeling the
sequential objects, while CNN is better at extracting high-
level spatial features. Combination of RNN and CNN networks
for extracting high-level spatial features as well as learning
temporal patterns is also being explored [22], [24]. According
to the results reported in the state-of-the-art methods, the deep
learning-based methods have achieved better performance
than the traditional hand-crafted feature-based methods in
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Fig. 1. Overview of the proposed method which includes data preprocessing, motion visualization and classification three steps. In the data preprocessing
step, error joints or corrupt skeletons are detected and recovered based on a predefined 3D bio-constrained skeleton model. Based on the recovered skeleton,
some body-level features are obtained, such as the JEAs and the JEDMs. These two view-invariant features are encoded into color and gray images respectively
as representations of human actions in the step of motion visualization. Finally, the generated two types of motion images are fed into a two-stream CNN
separately for action recognition and the results of the two branches are fused at decision level.

human action recognition. Nevertheless, the existing deep
learning-based methods are not effective enough to represent
both the spatial dependency and temporal distribution of
human actions.

In this paper, we propose a 3D bio-constrained skeleton
model for recovering corrupted skeletons and estimating joint
Euler angles, and present a view-invariant CNN-based method
for human action recognition using the recovered skeletons.
The bio-constrained skeleton model is defined to satisfy two
types of constraints: 1) constant bone lengths and 2) motion
limits of joints. Based on these two types of constraints
and motion continuity, an approach for recovering corrupt
skeletons is proposed and the joint Euler angles (JEAs) are
calculated during the recovery process. The body pose can
be uniquely determined by a series of JEAs given the struc-
ture of the human body. Thus, to consider both the global
structure and local joint variations, we use the Euclidean
distance matrix between joints (JEDM) which is defined as
a matrix of the pairwise Euclidean distances between joints
to describe the structure of human body and relationships
between joints besides JEAs. By visualizing the JEAs and the
JEDM with images, human actions are represented by images
which contain both the global (JEDM) and local (JEAs) pose
information. In this way, the problem of action recognition
is transformed into a problem of classifying these images.
Hence, the advantages of CNN can be made use of in
action recognition task. To summarize, our method consists
of three stages: 1) Preprocess the skeleton data by using
the skeleton recovery algorithm to rectify those noisy and
unreasonable skeleton data; 2) Encode the local (JEAs) and
the global (JEDM) pose features of the recovered skeleton into
images; 3) Feed the encoded motion images, each of which
contains both the spatial and the temporal information of an
action, into a two-stream CNN for action recognition. The two
CNN branches are fused in the decision level.

The contribution of our work can be summarized as the
following aspects:

• A skeleton recovery method for tackling noisy skeleton
data and estimation of the JEAs based on our 3D bio-
constrained model is proposed. Different from the Kinect
skeleton, the 3D bio-constrained skeleton model is a rigid
structure.

• Two new view-invariant motion features, the JEAs and the
JEDM, are proposed to represent the motion of each joint and
the structure relationship between joints, respectively. Results
of the extensive experiments verify the efficiency of the JEAs
and JEDM in describing human action together. To our best
knowledge, it’s the first time that the JEAs and JEDM are used
in the human action recognition.

• A framework from the skeleton data preprocessing to
the action recognition is established, as shown in Fig. 1.
Experiments on three benchmark datasets achieved a largest
improvement of 4% compared to the state-of-the-art methods,
which demonstrates the effectiveness of our proposed method
for view-invariant action recognition.

The rest part of this paper is organized as: Section 2 gives
a review of related works in view-invariant and skeleton-
based action recognition. Section 3 introduces the defined
3D bio-constrained skeleton model and presents the approach
for skeleton recovery and estimation of joint Euler angles.
Section 4 proposes a new method for motion visualization
and recognition by considering both the global and the local
pose information. Section 5 provides detailed evaluations of
our proposed method on three different datasets. Section 6 con-
cludes this work.

II. RELATED WORKS

Human action recognition is still a challenging task due
to the difficulty in representing the complex spatial-temporal
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process of human actions, as well as coping with the environ-
ment settings including the background of images, occlusions,
and viewpoints [1]. In this section, the review is focused on
the view-invariant methods and the spatio-temporal represen-
tations of human actions.

A. View-Invariant Action Recognition Based on the Color or
Depth Images

Most of the early works recognized human action based on
the color image sequences. These methods not only have to
deal with problems like illumination changes and segmentation
of the human body from the background but also face a
more thorny problem to make their algorithms robust to
different views. Shen and Foroosh [25] defined a Fundamental
Ratio which refers to the ratios among elements in upper
left 2 × 2 submatrix of a fundamental matrix induced from
plane motion as a view-invariant feature. This geometric
transformation-based method assumes the correspondence of
points in two RGB images can be accurately obtained, which is
still an under exploring problem. Junejo et al. [26] proposed
a temporal self-similarities matrix (SSM) that calculates the
change of features between all pairs of frames as a descriptor
in the cross-view action recognition. But this descriptor is
not strictly view-invariant and mainly considers the temporal
evolution. Rahmani and Mian [27] transferred unknown view
data to a canonical view by using a learned Non-linear
Knowledge Transfer Model (NKTM) network in cross-view
action recognition. Compared to the color image, the depth
image is affected less by illumination and more convenient
for segmentation, but it also suffers from the varying action
presentations in images caused by the observation angle.
Oreifej and Liu [28] described the depth sequences using a
histogram of the distribution of surface normal orientation in a
4D space of time, depth, and spatial coordinates. However, this
method performs badly on the cross-view dataset. Rahmani
et al. [29] introduced the histogram of oriented principle
components (HOPC) as a descriptor for cross-view action
recognition. But the overall computational time on a 3.4 GHz
machine with 24GB RAM using Matlab is about 2 seconds per
frame, which hinders the application of this method. Yang and
Tian [30] proposed a general scheme of using super normal
vector (SNV) for action recognition based on the depth images.
Though it achieves a high performance on single view dataset,
the SNV is not view-invariant. Unlike the color and depth data,
view-invariant features can be extracted easier from skeleton
data.

B. Extracting View-Invariant Features From Skeleton Data

Features based on the displacements of joints are widely
used in skeleton-based action recognition for their simpleness
in the calculation. Joint displacement can be divided into
the spatial displacement and the temporal displacement [31].
The spatial displacements which code the structure infor-
mation of human body are calculated between all pairs of
joints [3], [17], [32], [33] or between some reference joints
and the other joints [18], [19], [34]. The temporal displace-
ments that depict the movement of joints are calculated

Fig. 2. Examples of corrupt skeletons obtained from kinect.

between motion frames [3], [33]. Orientation is another com-
monly used feature to describe human pose. Xia et al. [4] used
the histograms of 3D joint locations (HOJ3D) as a compact
representation of postures for action recognition. They put the
origin of a spherical coordinate system at human hip center and
divided the spherical space into n bins. Each bin represents
a joint orientation relative to the hip center. By casting all
joints into the spherical space a HOJ3D is obtained. Some
higher level features, such as Lie Group [5], [35] and the
covariant matrix of joints [6], are also extracted from skeleton
sequences. Reference [5] modeled the 3D geometric relation-
ship between various body parts using the rotation matrix and
translation matrix, and mapped the human actions to the curves
in Lie Group. In [6], the covariant matrix that encodes the
shape of the joint probability distribution of the set of random
variables was used. Liu et al. [10] proposed a sequence-
based view-invariant transformation on joint coordinates by
establishing a principal coordinate system of torso frames and
used the transformed joint coordinates for action recognition.

All the aforementioned methods build the body-level fea-
tures directly from the raw skeleton data that is mainly
obtained by Kinect sensor. However, as shown in Fig. 2, many
problems exist in the Kinect skeleton, especially in the cases
of cross-view action recognition where occlusions happen
frequently. The corrupt skeletons will distort the extracted
features and cause the mismatch between the features and the
human actions. Instead of extracting motion features directly,
the proposed method recovers those corrupt skeletons or error
joints of the raw skeleton based on a 3D bio-constrained
model first, which makes the proposed method more robust to
noisy skeletons. Furthermore, joint Euler angles are calculated
during this process and introduced as a view-invariant feature
to describe human actions considering the articulated structure
of the human body.

C. Modeling of Spatio-Temporal Information

Human action is a complex spatio-temporal process, which
requires a balanced consideration between spatial changes and
temporal evolution of human pose for recognition. Generally,
existing representation methods of the spatio-temporal infor-
mation can be divided into two categories: traditional hand-
crafted feature-based models [3]–[6], [28], [32], [36], [37]
and deep learning-based methods [10]–[22], [35]. The tra-
ditional models rely on hand-crafted features which are
often dataset-dependent and ineffective in modeling the com-
plex spatio-temporal process of human actions. The deep
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learning based methods mainly employ two learning archi-
tectures: recurrent neural network (RNN) with the Long-
Short Term Memory (LSTM) neurons and convolutional neural
network (CNN). Du et al. [13] divided the whole human body
into five parts and fed their motion features into five bidirec-
tional recurrent neural networks (BRNNs) respectively. Lee
et al. [14] proposed a novel ensemble Temporal Sliding LSTM
(TS-LSTM) network which is composed of multiple parts
including short-term, medium-term and long-term TS-LSTM.
Liu et al. [15] developed a spatio-temporal LSTM with a new
gating mechanism to handle the noises and occlusion cases.
Song et al. [16] proposed a method to select discriminative
joints based on LSTM. Wang and Wang [20] used a two-
stream RNN architecture to model both the temporal dynamics
and the spatial configurations. While the RNN architecture is
suitable for modeling sequential data or temporal information,
it lacks of the capability of extracting high-level patterns from
the spatial information.

Different from RNN, CNN is better at learning high-level
spatial features in the images, which has been verified by
its success in image recognition [38]–[40]. To make use of
the advantages of CNN, most CNN-based methods encode
the motion features extracted from the skeleton data into
images. Thereby, transfer the action recognition into an image
classification problem. Liu et al. [10] proposed an enhanced
motion visualization method that encodes the transformed
coordinates into motion images in a 5D space (3 dimen-
sions for coordinates, 1 dimension for frame number and
1 dimension for joint order). Ke et al. [18] transformed the
cosine distance (CD) and the normalized magnitude (NM)
which represent the spatial structure information of skeleton
in each frame into images, and fed the encoded images of
different body parts (trunk, right arm, left arm, right leg, left
leg) into CNN separately. In another work of Ke et al. [19],
displacements between four reference joints and the rest joints
were encoded into gray images. Wang et al. [11] encoded the
joint trajectories and their dynamics as the color distribution
in images, which is referred to as Joint Trajectory Maps
(JTM). Motion encoding has achieved promising performance
in action recognition, but how to generate a more descriptive
image is still underexplored. In our method, encoded JEAs
and JEDM images are exploited together to consider the body
structure and the variation of articulated joints.

III. SKELETON RECOVERY METHOD

As shown in Fig. 1, our method is comprised of three stages:
skeleton preprocessing, motion visualization and classification.
In the preprocessing step, we detect and rectify those unrea-
sonable skeletons or joints. The recovered skeleton pose has
fixed bone lengths and all joints are located within their motion
limits. The consistency of human skeleton structure can be
guaranteed across different datasets by recovering those human
poses on the defined rigid 3D bio-constrained skeleton model.

Currently, most datasets for skeleton-based human action
recognition are collected using Kinect. However, as shown
in Fig. 2, there are a lot of errors in the skeletons estimated
by the Kinect sensor, in particular in the case of occlusions.

Fig. 3. 3D bio-constrained skeleton model and the definition of joint Euler
angles in the local coordinate frame of Ji .

Since the algorithm inside the Kinect sensor estimates the
skeleton based on pixel features in the depth image [7],
the extracted skeleton often suffers from two problems: vary-
ing bone lengths and violation of the motion limits of the
human body. If recognizing human actions using the raw
skeleton data directly, the classification accuracy will be
significantly affected by the noisy and corrupted skeletons.

A. 3D Bio-Constrained Skeleton Model

In order to recover corrupted skeletons and error positions of
joints existing in the raw skeleton data, a 3D bio-constrained
skeleton model is proposed as shown in Fig. 3. The “bio-
constrained” means that the skeleton structure is constrained
by inherent features of the human body, which refer to joint
motion limits and fixed bone lengths. All the poses generated
from this bio-constrained skeleton model must satisfy these
two types of constraints. Besides the constraints, there are two
main differences between our bio-constrained model and the
Kinect skeleton model in the structure: 1) two more degrees
of freedom are added to the joint SpineShoulder(20), which
is denoted as a triple joint in Fig. 3; 2) the pelvis frame,
formed by joints SpineBase(0), SpineMid(1), HipLeft(12) and
HipRight(16), is fixed with a 150◦ angle between the bones
of the left hip and the right hip in the horizontal plane.
In the pelvis frame, the bone between joints SpineBase(0) and
SpineMid(1) is perpendicular to the plane formed by bones of
the left and right hip. The pelvis frame can only rotate and
translate as a whole. The reason for adding two more degrees
of freedom to SpineShoulder(20) is to separate motions of the
left shoulder, the right shoulder, and the neck. It’s a common
sense that the movement of the left shoulder will not affect the
position of right shoulder and neck, and vice versa. Design of
a 150◦ angle in pelvis frame is for distinguishing the front side
and the back side of the human body, which is an unsolved
problem in the Kinect skeleton model. The angle value is
an empirical selection after some trials. As the estimation of
coordinates of hand joints is quite unstable and noisy, hand
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Fig. 4. The recommended motion range of right shoulder by the neutral zero
method [9].

joints are not considered in our skeleton model. Actions of
hands are represented by the changes of hand state instead,
which is discussed in the section 5. The ID number of each
joint is assigned in a similar way with the Kinect model for
convenience.

Mathematically, a human skeleton can be defined as a set
of joints and the bones between neighboring joints. In our
model, as denoted in the equation 1, a joint is described
with 5 parameters: 3D position in the camera space P Ji =
(xi , yi , zi ), joint orientation O Ji = (αi , βi , γi ), initial orienta-
tion I Ji = (nxi , nyi , nzi ), motion limits L Ji = (αli , βli , γli ),
and JointType which is an ID of the joint and refers to elbow,
knee, shoulder, etc. In equation 1, L Bij means the length of
the bone between joints i and j. The joint orientation is defined
with three Euler angles α, β, and γ . As shown in Fig. 3, in the
local coordinate frame of joint i , αi denotes the joint rotation
angle about xi axis, βi denotes rotation angle about yi axis
and γi is the angle rotated about zi axis. The sign of an angle
is determined by the right hand rule. For the sake of simpli-
fying the forward kinematics calculation, initial orientations
of all joints are unified as the initial orientation of frame 0.
Joint motion limits are determined according to the neutral
zero method recommended by the American Association of
Orthopedic Surgeons (AAOS) [9]. A joint is illegal if any of
its three Euler angels is out of the corresponding motion range.

SK : �k = {Ji (P Ji , O Ji , I Ji , L Ji , JointT ype) :
O Ji ∈ L Ji , ‖P Ji − P Jj ‖2 = L Bij , i ∈ [0, 22]} (1)

Fig. 4 shows the motion limits of right shoulder recom-
mended by the neutral zero method. In Fig. 4, the neutral
zero position of the shoulder joint is shown as the solid blue
line, where the arm points down to the ground naturally. The
left picture illustrates the shoulder joint can rotate about y axis
within a range of [−170◦, 40◦] with respect to the neutral zero
position. Similarly, from the right two pictures, we know that
the rotation range of the right shoulder joint about x axis is
[−180◦, 40◦]. Therefore, the motion limits of right shoulder
are α ∈ [−180◦, 40◦] and β ∈ [−170◦, 40◦].

B. Skeleton Recovery and Estimation of Joint Euler Angles

A novel method for skeleton recovery based on the 3D bio-
constrained skeleton model is proposed. First, the constraints
of the fixed bone lengths and joint motion limits are applied
to the raw skeleton data to detect error joints. A parameter ωi

is used to record the detection results. ωi equals to 1 when
joint i is valid and 0 for an invalid joint. For those valid

joints, we preserve their position information in the 3D bio-
constrained skeleton. For those invalid joints, their positions
will be relocated in the 3D bio-constrained skeleton model
based on two principles: 1) positions of illegal joints are
less important and serve for guaranteeing the positions of
the correct joints in the kinematic chain; 2) considering the
motion continuity, the true positions of the error joints in the
current frame should be near their positions in the previous
frame. By keeping the position information of the correct joints
and relocating those error joints, the effective information of
the observed pose can be recovered in the defined 3D bio-
constrained skeleton. The whole skeleton recovery process can
be formulated as equation 2:

arg min
α,β,γ

D(SK 0
t − SK ob

t ) =
∑22

i=0
[λrωi‖P J 0

i,t

−P J ob
i,t ‖2 + λw(1 − ωi )‖P J 0

i,t − P J 0
i,t−1‖2] (2)

where SK 0
t means the state of the predefined 3D bio-

constrained skeleton at instant t and SK ob
t represents the

observed skeleton state at instant t . α, β and γ are the JEAs,
which determine the pose of a skeleton. P J 0

i,t is the i th joint
position of the 3D bio-constrained skeleton in the frame t ,
P J ob

i,t is the position of the observed joint i in the frame t
and P J 0

i,t−1 is the position of the bio-constrained joint in the
frame t − 1. ωi = 1 if joint i is valid, otherwise ωi = 0. λr

is the weight for valid joints and λw is the weight for error
joints. Usually, the λr is much larger than λw, which means
the position of the valid joint is much more important than
the estimated position of the invalid joint. By minimizing the
value of equation 2, the pose of the observed skeleton can
be recovered in the bio-constrained skeleton model and those
invalid joint positions are rectified.

At instance k, the position of a joint i +1 can be calculated
recursively based on its father joint i .

P Ji+1(k) = RB(k)Ri (k)
−−−−−−−−→
P Ji P Ji+1(0) + P Ji (k)

P J0(k) = P J ob
0 (k)

Ri (k) =
∏

i

0
1 R 1

2 R 2
3 R · · · i−1

i R (3)

where P Ji+1 and P Ji are the positions of bio-constrained
joints i + 1 and i in the camera space,

−−−−−−−−→
P Ji P Ji+1(0) is the

bone vector from joint i to joint i + 1 at instant 0, namely
the bone vector in the initial skeleton pose as shown in Fig. 3.
Joint 0 (SpineBase), the root joint, is aligned with the observed
joint 0. RB(k) is the global rotation matrix at instant k of the
whole skeleton, which rotates the whole skeleton to match
the observed skeleton. Ri (k) is the rotation matrix from the
local coordinate frame i to the coordinate frame 0 in the bio-
constrained skeleton. i−1

i R denotes the rotation of joint i ,
which is defined as:

i−1
i R =

⎡

⎣
1 0 0
0 cos αi − sin αi

0 sin αi cos αi

⎤

⎦

⎡

⎣
cos βi 0 sin βi

0 1 0
− sin βi 0 cos βi

⎤

⎦

⎡

⎣
cos γi − sin γi 0
sin γi cos γi 0

0 0 1

⎤

⎦ (4)
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To make the calculation more efficient for online applica-
tion, the joint position in the (k + 1)th frame is calculated
based on the joint position in the kth frame.

P Ji+1(k + 1) = RB(k + 1)�Ri (k + 1)

·−−−−−−−−→
P Ji P Ji+1(k) + P Ji (k + 1)

�Ri (k) =
∏

i

i−1
i �R · · · 2

3�R 1
2�R 0

1�R (5)

where RB(k + 1) denotes the global rotation matrix of the
whole human body in frame k + 1 and �Ri (k + 1) denotes
the local rotation matrix from the kth frame to the (k + 1)th
frame. i−1

i �R can be calculated by:

i−1
i �R =

⎡

⎣
1 0 0
0 cos �αi − sin �αi

0 sin �αi cos �αi

⎤

⎦ ·
⎡

⎣
cos �βi 0 sin �βi

0 1 0
− sin �βi 0 cos �βi

⎤

⎦

⎡

⎣
cos �γi − sin �γi 0
sin �γi cos �γi 0

0 0 1

⎤

⎦ (6)

where �αi , �βi and �γi are changes of Euler angles at
joint i between two sequential frames. By using the Rodrigues
rotation matrix, i−1

i �R can be formulated as

i−1
i �R = (I + �αi Kxi )(I + �βi Kyi )(I + �γi Kzi )

≈ I + �αi Kxi + �βi Kyi + �γi Kzi (7)

where I is a 3 × 3 identity matrix, Kxi , Kyi and Kzi are the
elements of Lie algebra SO(3) generating the rotation group
SO(3) of R

3. Assuming the current direction vector of axis x
is ex = (kx1, kx2, kx3), Kx is calculated as the equation 8. Ky

and Kz can be obtained similar with Kx .

Kx =
⎡

⎣
0 −kx3 kx2

kx3 0 −kx1
−kx2 kx1 0

⎤

⎦ (8)

The skeleton recovery process is implemented with two
steps based on equations 2∼8. In the first step, those joints
located in the torso are selected to calculate the global
rotation matrix RB and the translation −→

t of the human
body. In the second step, the remain joints are divided into
5 different kinematic chains according to their relationships
with each other, as shown in Fig. 5. The recovery algorithm
is implemented in parallel on the 5 kinematic chains and can
run at a speed of around 15 frames per second on a computer
with an Intel i7 CPU and 8GB RAM, which shows a better
potential for online application compared to [29].

IV. MOTION VISUALIZATION AND RECOGNITION

A rigid recovered skeleton and some body-level motion
features, such as the JEAs which contain the local pose
information of each joint, are obtained in the former section.
These body-level features not only describe the pose of the
human body but also are view-invariant.

In the following, a motion visualization technology which
encodes the extracted motion features in each frame into
color or gray images will be introduced. Each column in
the encoded image corresponds to an action frame. Thus,
an action sequence with f frames is converted to an image

Fig. 5. The skeleton recovery algorithm is implemented with two steps: I)
the joints located in torso are recovered first and the global rotation matrix
is estimated; II) the remaining joints are divided into 5 kinematic chains
according to their physical relationships and different chains are recovered
parallelly.

with f columns after encoding. The generated motion images
contain both the global and local pose information in each
frame, as well as their variations along with time. Finally,
these encoded motion images are fed into CNNs to extract
high-level spatio-temporal features for action recognition.

A. Motion Visualization

Motion visualization is a technique to encode motion fea-
tures as some visible graphics. There are many advantages by
visualizing the human motion features with images. Firstly,
such a kind of image contains both of the spatial information
and the temporal information. By means of visualization,
the motion pattern is converted into the image pattern pre-
sented on the encoded image. Therewith, the problem of action
recognition is transformed into an image recognition problem.
The capability of CNN in image recognition can be made
full use of. Secondly, it is helpful to tackle the problem of
different action durations and different action starting time
in motion clips. The action duration will cause the pattern
presented on the encoded image to become wider or narrower.
The action starting time will cause the translation of motion
pattern in the encoded image. CNN is robust to these kinds
of image variations, which helps improve the robustness of
action recognition algorithm to different subjects.

Considering the reasons mentioned above, we adopt motion
visualization technology and propose a new approach to
encode the human actions. Human action, in essence, can
be defined as a continuous variation of body state during a
certain time interval. A good body state descriptor should
contain both the global pose of the whole body and local
pose of each body part. Under this principle, a concatenate
state vector 	(PG , PE , PH ) is introduced to represent human
body state, where PG is the global orientation of human body
that can be derived from the global rotation matrix RB , PE

is the local pose of human body which consists of all the
JEAs, PH is the pose state of hands. The rotation matrix
RB describes the general orientation of the human body with
respect to the environment. To unify the representation and
make it view-invariant, the transpose of RB is multiplied with
the gravity vector Gv in current camera space and get a pose
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Fig. 6. 3 states of hand defined in the kinect model.

vector PG = RT
B ·Gv = (Pgx , Pgy, Pgz)

T . Hence, PG can be
seen as the gravity vector expressed in human body coordinate
frame and depicts the pose of human body relative to the
ground plane. For example, PG can tell us whether a person
is standing straight up, leaning or lying down, which can not
be inferred from the JEAs. In our 3D bio-constrained skeleton
model, joints of hands are not considered because of their
noisy coordinates estimated by the Kinect. To describe the
movements on hand, hand state which is more robust to noisy
data and independent to the camera position is used instead
of the Euler angles of hand joints. Three different states of
a tracked hand are defined in Kinect: lasso, open and closed,
as shown in Fig. 6. These states are capable to represent some
basic actions done by hands, such as grasp, push, cup hands,
point to, etc.

However, the motion images generated above emphasize
more on the temporal variation of each joint while lack of the
structure relationships between joints. As a complementary to
JEAs feature, we use the Euclidean Distance Matrix between
joints (JEDM) to describe the human body structure and the
spatial relationships between joints. JEDM is defined as a
matrix of the pairwise Euclidean distances between joints as
denoted in equation 9, where λ is used to normalize the dis-
tance value within the range [0, 1], and i, j ∈ [0, 20] according
to the number of joints in our 3D bio-constrained skeleton
model. EDM has been widely used in the modal analysis,
structure representation, and recovering 3D human pose from
single image [41]. It has been verified that the EDM not only
encodes the underlying structure of vector representations but
also can capture richer information about pairwise correlations
between body joints. Besides, it is coordinate-free, invariant
to rotation, translation, and reflection. As JEDM is symmetric,
only the left lower half of each JEDM is encoded to a column
of a gray image for action recognition as shown in Fig. 7.

J E DMi, j = 1

λ

∥∥pi − p j
∥∥

2 (9)

Based on the definition of body state vector 	, a human
action with f frames can be defined as a series of human body
states A = (	1, 	2, . . . , 	 f ), and motion visualization is to
map these human body states to an image M, as formulated
by equation 10:

M = F(A) = F(	1, 	2, . . . , 	 f ) (10)

where, F(·) is the mapping function that maps an action from
the motion feature space to the image space. Each column of
the image M corresponds to a state 	 of the human body
in a frame. Column number is ordered as the frame number.

Fig. 7. The two-stream neural network based on ResNet.

Thus, the spatial pose states and their temporal evolutions are
encoded into a 2D image. The mapping function of JEAs is
formulated as equation 11. The global pose PG is normalized
by its L2 length. Different joint motion limits are considered
in calculating the mapped color values of JEAs to equalize the
role of different joints in describing an action. For hand pose
PH , different colors are assigned to different states directly:
green for the open state, red for the closed state, blue for lasso
state, purple for untracked, and black for unknown. In JEDM
encoding, the λ is selected as the height of person to eliminate
the influence of human size and the corresponding pixel value
is pi, j = 255J E DMi, j .

In total, rotations of 17 joints must be considered in our bio-
constrained skeleton model for JEAs encoding and 21 joints
have to be considered for JEDM encoding. Therefore, the body
state 	J E As has a dimension of 56, which comprises the
gravity pose vector PG(1 × 3), the JEAs PE = (α, β, γ )
(17 × 3) and the hand states PH (2 × 1). The three elements
of PG vector or each J E As are mapped to B, G, R color
respectively and are put in three consecutive rows of an image
column. The body state 	J E DM has a dimension of 210 since
JEDM is a 21 × 21 matrix and only half of the elements are
considered. As a result, an action A with f frames is encoded
into two motion images, MJ E As with a size of 56 × f and
MJ E DM with a size of 210 × f .

F(	56×1)

= (CPG , CPE , CPH )T

= (
255

‖PG‖2

⎡

⎣
Pgx

Pgy

Pgz

⎤

⎦, 255

⎡

⎢⎣

α−αlmin
αlmax −αlmin

β−βlmin
βlmax −βlmin

γ−γlmin
γlmax −γlmin

⎤

⎥⎦

×17

,

[CH L

CH R

]
)T (11)

B. Motion Recognition

ResNet [38] which has been proved to be effec-
tive in the ImageNet Large-ScaleVisual Recognition Chal-
lenge (ILSVRC) is selected as the backbone of our convo-
lutional neural network for extracting high-level features from
JEAs images and JEDM images. The basic module of ResNet
is shown in Fig. 7. Given an input feature x , the output of this
module at layer t can be formulated as

y = W T
2 σ(B N(W T

1 σ(B N(x)))) + x = ht (x) + x (12)

where B N(·) refers to batch normalization, σ is a nonlinear
activation function, W1 and W2 are the weights of the convolu-
tional layer. Due to the recursive relationship between layers,
the output of t +1 layer is yt+1 = ht+1(yt )+ yt . Thus, for a T
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layers ResNet, the output at T -th layer is yT = ∑T
t=1 ht (xt),

where xt is the features input to the tth layer and x1 = M.
The final output of T -layer ResNet with the input of motion
image M is

ŷ = φ(WT
c H(M)) = φ

(
WT

c

T∑

t=1

ht (xt )

)
(13)

where Wc is the weights of the final fully connected layer
for classification, ŷ is the predicted label corresponding to
ground truth y which is often encoded as a one-hot vector.
φ(·) denotes the mapping relationship from the high-level rep-
resentation of motion image to the label space φ(R) : R → Y .
The training loss function is defined as a cross-entropy loss
together with a regularization penalty R(W).

L = − 1

N
(

N∑

i=1

yi · log(ŷi )) + R(W) (14)

where N is the size of the training set. W are the trainable
weights of the whole network and R(W) = ∑

i
W2

i .

The two CNN streams are trained separately and they
are fused together at the decision level by averaging their
prediction scores, which is formulated as:

s(l|IJ E As ,IJ E DM)

= 1

2
(prob(l|IJ E As) + prob(l|IJ E DM)) (15)

Actually, we also explored some other fusion strategies,
such as maximum and linear weighted average, and tried
training the two branches jointly by adding a fully connected
layer at the top of the two branches. But the average strategy
denoted in equation 15 achieves the best results. How to
fuse the two branches of such a kind of two-stream network
together without training it separately and achieve a better
result than the average fusion strategy is one of our future
work.

V. EXPERIMENTS

We evaluate our method on three benchmark datasets:
North-westernUCLA [42], MSRC-12 [43] and NTU RGB+D
dataset [23]. The MSRC-12 is a single-view dataset, while
the Northwestern-UCLA and the NTU RGB+D dataset are
collected from different views. We apply the cross-subject
training protocol on the MSRC-12 dataset and the cross-view
training protocol on the Northwestern-UCLA dataset. For the
NTU RGB+D dataset, which is the largest 3D skeleton dataset
for action recognition so far, verification of our method is
based on both the cross-subject and the cross-view protocol.

A. Implementation Details

In our experiments, we select a pre-trained 34-layer ResNet
as the backbone network and implement the two-stream CNN
with TensorFlow. There are several numbers of layers that are
commonly used in ResNet: 18, 34, 50, 101, and 152. Here the
choice of 34 is just a compromise between the performance
and model size. Batch normalization and ReLU layers are
utilized in this network. Batch size is set to 64 and training

images are shuffled randomly. Weights are updated using
the stochastic gradient descent (SGD) method. Momentum
optimizer with a momentum value of 0.9 and a weight decay
of 0.0001 are used. Initial learning rate is set to 0.015.
Prediction accuracy on the test data is evaluated after every
training epoch. The training is performed on a computer with
4 NVIDIA Titan XP graphics cards, 64 GB RAM and an Intel
Xeon(R) processor E5-2640.

Considering the varying length of action sequences done by
different subjects, the encoded motion image of each action
sample is resized to 224 × 224 to make use of the pre-trained
network. To some extent, resizing the image will cause loss
of the original physical meaning of pixel values, especially
resizing along the height direction. However, after encoding
those features into an image, what we truly care about is the
pattern presented in the image. Different patterns represent
different actions. In image space, resizing operation will not
change the pattern existing in the encoded image. Therewithal,
resizing operation will not influence the recognition result. For
those actions performed by two subjects in the NTU RGB+D
dataset, their motion images are synthetic images by averaging
the corresponding pixel values in the motion images of the two
engaged subjects.

B. MSRC-12 Dataset

This single-view dataset comprises 594 sequences and
totally 71 359 frames (approx. 6h40m) are collected by the
Kinect sensor. About 6244 instances of 12 gestures are gen-
erated by 30 subjects. The skeleton data records the position
of 20 joints with ∼2cm accuracy. Compared to the proposed
3D bio-constrained skeleton model, there is no neck joint in
the skeleton of this dataset. So a neck joint is added to the
skeleton, which is located between the head joint and the
shoulder center with a distance of 1/4 length of the neck bone
to the shoulder center joint. The skeleton recovery and the
calculation of the JEAs and JEDM are performed as mentioned
in section 3 and 4. Since no hand state is recorded in this
dataset, we set all the hand states to unknown. The 12 ges-
tures in this dataset include “start system”, “duck”, “push
right”, “goggles”, “wind it up”, “shoot”, “bow”, “throw”, “had
enough”, “change weapon”, “beat both” and “kick”. Even
without motion information of hands, these 12 gestures have
enough differences in the movements of other body parts.
Therefore, the influence of ignoring hand states is negligible,
which is supported by the action recognition result shown
in Table I. Fig. 8 is an encoded motion image of the “duck”
motion. In Fig. 8, we can clearly see that the “duck” motion is
performed 11 times during the recording time. The presented
patterns in the image of these 11 times of motions are quite
clear and similar to each other, which indicates the robust-
ness and effectiveness of the proposed motion visualization
method.

Before feeding the encoded images into CNN, these long
motion images with multiple times of motions are segmented
into shorter clips that only contain single times of motion.
Similar to [10], [11], we apply the cross-subject protocol on
this dataset, which means motion instances performed by
odd subjects are used as training set and instances acted by
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Fig. 8. Encoded image of the “duck” motion from MSRC-12 dataset.

TABLE I

COMPARISON OF RESULTS ON MSRC-12
DATASET(CROSS-SUBJECT PROTOCOL [10], [11])

even subjects are used for testing. A final evaluation accuracy
of 94.20% is achieved on this dataset.

Comparisons between the proposed method and other meth-
ods are shown in Table I. Our method achieves the-state-of-
art evaluation accuracy, which outperforms the best hand-craft
feature-based methods by 2.5%. Compared to the CNN-based
method JTM [11], our method performs 1% better. Though
our method performs as good as the ESV [10] that also
visualizes actions with images, our method is more efficient
considering the fact that the result of ESV fused 10 CNN
streams and a number of synthesized samples are used for
training. The ESV method reported a better result based on the
weighted fusion strategy which only considers some selected
branches, but they didn’t explain explicitly how to select
those streams. Hence, to evaluate the efficiency of the main
method other than fusion strategies, we only compared with
their results based on the same average fusion strategy in all
experiments. Actually, our method can achieve a quite good
result with only the JEDM stream. Meanwhile, the JEDM is
much simpler to calculate compared with features used in the
JTM and ESV method. Different from the proposed method,
JTM method visualizes joint trajectories and ESV encodes
the transformed joint coordinates. Performance of our method
on this dataset verifies the efficiency of the proposed method
in recognizing motions of different subjects. The recognition
confusion matrix is shown in Fig. 9.

C. Northwestern-UCLA Dataset

In order to evaluate the performance of the proposed method
on different views, Northwestern-UCLA dataset [42] is cho-
sen as another test dataset. This dataset includes 10 action
categories: “pick up with one hand”, “pick up with two
hands”, “drop trash”, “walk around”, “sit down”, “stand up”,
“donning”, “doffing”, “throw”, and “carry”. Each action is
performed by 10 actors and totally 1494 motion sequences
are collected from 3 different viewpoints. Following [42]
and [10], we use the cross-view training protocol, that is, using
data from the first two views as the training set and samples
from the third view as the test data.

Fig. 9. Confusion matrix of MSRC12 dataset.

TABLE II

RESULTS ON NORTHWESTERN-UCLA DATASET

(CROSS-VIEW PROTOCOL [10], [42])

Table II shows recognition results on the Northwestern-
UCLA dataset. According to the results, the CNN-based
methods outperform the traditional methods based on hand-
crafted features significantly. Our method reaches an accuracy
of 94.40%, which is the highest among all reviewed methods.
Compared with the best hand-crafted feature-based method
TLDS [44], our method achieves a better performance by 20%.
Compared with the RNN-based methods, the proposed method
outperforms the latest Multi-task RNN [46] method by 7% and
TS-LSTM [14] method by 5%.

Among those skeleton-based methods, HOJ3D [4] extracts
the histogram of joint orientation and LARP [5] depicts the
action with Lie group. ESV [10] is the one that our method is
most similar to. ESV uses the transformed joint 3D coordinates
for motion visualization. While our method estimates the Euler
angles of each joint and the EDM of recovered skeleton dur-
ing the skeleton recovery process considering the articulated
structure of human body, which are turned out to be more
discriminative view-invariant features. Compared with these
three methods, our method improves the recognition accuracy

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 25,2021 at 09:59:35 UTC from IEEE Xplore.  Restrictions apply. 



3968 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 28, NO. 8, AUGUST 2019

by 40%, 20%, and 4% respectively. In detail, we obtain
an accuracy of 86.40% with only the branch of JEAs and
an accuracy of 91.47% with only the JEDM stream. The
performance of the proposed method achieved on this dataset
proves the effectiveness of the proposed features and method
in different views.

However, both the MSRC-12 and the Northwestern-UCLA
dataset are not big enough. Therefore, the proposed method is
tested on the NTU-RGB+D dataset which is one of the largest
3D skeleton datasets in the following subsection.

D. NTU RGB+D Dataset

The NTU RGB+D dataset is one of the largest 3D skeleton
datasets for action recognition. It contains 60 motion cate-
gories including “drink water”, “eat meal/snack”, “brushing
teeth”, “brushing hair”, “drop”, “pickup”, and so on. These
actions are performed by 40 subjects and more than 56K
motion samples from various views are generated. Different
subjects and viewpoints bring big challenges in discriminating
intra- and inter-class variations. Considering the dataset size,
the similarity between actions, and large noises in the dataset,
NTU RGB+D dataset is a quite challenging dataset for action
recognition. According to [23], we test our method utilizing
both the cross-subject and the cross-view protocol. In the
cross-subject protocol, the motion of subjects with ID 1, 2,
4, 5, 8, 9, 13, 14, 15, 16, 17, 18, 19, 25, 27, 28, 31, 34, 35,
38 are selected as training data which have 40 320 samples
and actions of the remaining 20 subjects which comprises
16 560 samples are used for testing. In cross-view evaluation,
18 960 sequences from camera 1 are used for testing and
37 920 sequences from camera 2 and 3 are selected for
training.

Performance of our method and comparison with state-
of-the-art methods are shown in Table. III. The cross-
subject accuracy and the cross-view accuracy of our method
are 86.68% and 91.79% respectively, which are the best
among the reviewed methods. In the cross-subject evaluation,
our method achieves a 25% improvement compared to the
best hand-crafted feature-based method LieGroups [35] and
a nearly 10% improvement compared to the best RNN-
based method two-stream GCA-LSTM [16]. Among the CNN-
based methods, our method increases the cross-subject evalu-
ation accuracy by 3.4% compared with CNN+Motion+Trans
method [21] and the cross-view evaluation accuracy by 1.7%
compared with LSTM+CNN method [22]. SkeletonNet [18]
and ESV [10] encode the joint coordinates in motion visu-
alization, which are different from our method that based
on the JEAs and JEDM. Reference [19] proposed a novel
skeleton transformer module to select the important skeleton
joints automatically in data processing, while our method
recovers those corrupt skeletons based on the proposed 3D
bio-constrained skeleton model. Performance of our method
which is much better than [10], [18] and [19] should attribute
to the effectiveness of the view-invariant features (JEAs and
JEDM) and the skeleton recovery process.

The confusion matrix of the cross-view predictions is shown
in Fig. 10. For those actions with high recognition error, either
they have higher inter-class similarity with other actions or

TABLE III

RESULTS ON NTU RGB+D DATASET [23]

mainly consist of movements conducted by fingers which are
recorded noisily. For example, about 10% of “wipe face”
action is wrongly recognized as “brushing teeth”. Both of
these two actions are slight motions of the hand moving
around the face. The action of “walk towards each other”
has a 15% confusion rate with “walk apart from each other”
because they have the same leg motions. Some other errors
like confusing “take off a shoe” with “wear a shoe” also have
a high incidence due to noisy hand skeleton and similarity
between these two actions. To reduce these errors requires
more consideration of interactions between human or between
human and surroundings. Better observation and description of
hand motion are also needed for recognizing those actions with
tiny movements on hands. Although limited by the inaccurate
data, the proposed method still reveals its effectiveness in
human action recognition with a best performance on this
dataset.

E. Evaluation of the Skeleton Recovery Process

To further evaluate the contribution of the skeleton recovery
module, we compare the action recognition results based on
the original skeleton data and the recovered skeleton data
using JEDM feature. As the feature of JEAs can only be
obtained after recovering, such a comparison is not able to be
implemented based on the JEAs. The comparison results are
shown in Table. IV. The results listed in the Table. IV demon-
strate that skeleton recovery process does help improve the
action recognition accuracy. Under the cross-subject training
protocol, the performance based on the recovered skeleton data
achieves an improvement of 1.77% and 0.52% respectively
on MSRC-12 and NTU RGB+D dataset compared with the
accuracy based on the original skeleton data. Under the cross-
view protocol, using the recovered skeleton can increase the
accuracy by 1.07% on Northwestern-UCLA dataset and 0.62%
on NTU RGB+D dataset.
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Fig. 10. Confusion matrix of the NTU RGB+D dataset under cross-view protocol (overall accuracy=91.79%).

TABLE IV

EVALUATION OF THE SKELETON RECOVERY MODULE

BASED ON JEDM FEATURE

In order to visualize the contribution of the skeleton recov-
ery process in our method for action recognition, contrasts
between the original skeleton and the recovered skeleton are
made in Fig. 11. In the motion of “pick up with one hand”,
the original skeletons (the first row ) are much noisier than the
recovered skeletons (the second row), especially when people
squatting down and self-occlusion happening. The recovered
skeleton which is constrained with fixed bone lengths and joint
motion limits has a more stable and clearer skeleton structure.
Clear skeletons are crucial in skeleton-based action recognition
for distinguishing similar actions. Similar results can also be
found in the comparison of motions of “pickup with two
hands”, “sit down”, “doffing” and “carry”, where occlusions
happen frequently. These skeleton contrasts indicate that pose

recovery based on bio-constrained skeleton model is effective
in data denoising and improving the recognition performance.

From another perspective, the skeleton recovery process
is also a feature extracting process where we calculate the
joint Euler angles. The JEAs is an important view-invariant
feature in our proposed method. By combining the JEAs with
the JEDM feature, recognition accuracy can be improved by
2∼8% in our experiments. As a consequence, the skeleton
recovery module is necessary and contributes to the perfor-
mance of the proposed method from many different points.

F. Evaluation of the JEAs and JEDM Features

Experiments on three benchmark datasets show that both the
JEAs and JEDM features have a good and stable performance
in action recognition. The JEAs focuses more locally on
each body part, while the JEDM encodes the whole body
structure information and pairwise relationships among joints.
Generally, the JEDM stream performs 3∼4% better than the
JEAs stream, which indicates that in the action recognition the
structure variation of the whole body is more discriminative
than the dynamic variations of joints. Furthermore, it also
verified that a better result can be obtained by fusing the
predictions of the two streams compared to each of them,
which means the motion information contained by the JEAs
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Fig. 11. Comparison between the original skeletons and the recovered skeletons in the actions of Northwestern-UCLA dataset: the first two rows are motion
sequences of “pick up with one hand”, among them the upper images are the original skeletons and the lower images are the recovered skeletons; the second
two rows are some comparisons in motions of “pick up with two hands”, “sit down”, “doffing” and “carry”.

Fig. 12. Motion images from 3 different views of the “donning”, “doffing”,
and “pick up with one hand” actions.

and the JEDM is complementary to each other. In the dataset
of MSRC-12 and Northwester-UCLA which have fewer action
categories, the fusion of these two streams improves the
result by 2∼3% compared with the single JEDM stream.
While in the NTU RGB+D dataset, the fusion result achieved
nearly 8% improvement. As NTU RGB+D dataset has more
action categories and more similar actions than the other two
datasets, the local information of each joint plays a more
important role in increasing the recognition accuracy compared
to experiments on the other two datasets. Different from
the ESV method where the different streams are different
presentation forms of the same information, the two branches

of our two-stream network have different information, which
is a critical difference between the proposed method and the
ESV method. Inspired by the experimental results, combining
the body structure information and the joint information to
design better action representations and learning network for
human action recognition is one of our following works.

In Fig. 12, motion images of the same action in three
different views show high similarity to each other. The con-
sistency of motion images in different viewpoints also proves
the efficiency of the JEAs and the JEDM as view-invariant
action descriptors.

VI. CONCLUSION

This paper proposed a method for view-invariant skeleton-
based action recognition based on a proposed 3D bio-
constrained skeleton model. In the 3D bio-constrained skeleton
model, lengths of bones are fixed and joint motion limits
recommended by the American Association of Orthopedic Sur-
geons (AAOS) are utilized. Skeleton recovery with the defined
bio-constrained skeleton model is introduced to deal with
corrupted skeletons or error joints. Based on the recovered
skeleton, two new kinds of view-invariant motion features,
the JEAs and the JEDM, are extracted as descriptors of
human actions. The two types of features represent the local
joint dynamic variations and the global structure information
of the human body, respectively. These two descriptors are
visualized with images and those encoded motion images are
fed into a two-stream CNN for action recognition. Predictions
of the two branches are fused together with average strategy
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at the decision level. Tests on some benchmark datasets,
such as MSRC-12 dataset, Northwester-UCLA dataset, and
NTU RGB+D dataset, verify the effectiveness of the pro-
posed method. Extensive experiments also demonstrated that
JEAs and JEDM are more efficient view-invariant features in
describing human actions compared with joint coordinates.
Currently, we train the JEAs branch and the JEDM branch
separately. Further research will be conducted on combining
the local joint information with the body structure information
to design better spatio-temporal representations of human
action and learning network.
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