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Powerful video representations serve as the foundation for many video under-

standing tasks, such as action recognition, action proposal and localization, video

retrieval, etc. Applications of these tasks vary from elderly caring robots at home

to large scale video surveillance in public places. Recently, remarkable progresses

have been achieved by data-driven approaches for video representation learn-

ing. Ingenious network architectures, millions of human-annotated video data,

and substantial computation resources are three vital elements to such a suc-

cess. However, further development of supervised video representation learning

is impeded by its heavy dependence on human-annotated labels, which restricts

it from relishing massive video resources freely on the Internet.

To solve the aforementioned problem, this thesis aims to learn video repre-

sentations in a self-supervised manner. The essential solution to self-supervised

video representation learning is to propose appropriate pretext tasks that can gen-

erate training labels automatically. While previous works mainly focused on the

usage of video order predictions as their pretext tasks, this thesis proposes a com-

pletely new perspective for designing pretext tasks – by spatio-temporal statistics

regression. It encourages a neural network to regress both motion and appearance

statistics along the spatio-temporal axes. Unlike prior works that learn video rep-

resentation on a frame-by-frame basis, this pretext task allows spatio-temporal

features learning, which is applicable to many video analytic tasks. By using a

classic C3D, we already achieve competitive performances.
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Based on the proposed statistics pretext task, we further conduct in-depth in-

vestigation with extensive experiments and uncover three crucial insights to signif-

icantly improve the performance of self-supervised video representation leaning.

First, architectures of backbone networks play an important role in self-supervised

learning while no best model is guaranteed for different pretext tasks. Second,

downstream task performances are log-linearly correlated with the pre-training

dataset scale. Attentive selection should be given on the training samples. To

this end, a curriculum learning strategy is further adopted to improve video rep-

resentation learning. Third, besides the main advantages of self-supervised video

representation learning to leverage a large number of unlabeled videos, features

learned in a self-supervised manner are more generalizable and transferable than

features learned in a supervised manner.

Considering that the computation of optical flow is both time and space con-

suming in the statistics pretext task, we further propose a new pretext task –

video pace prediction, which asks a model to predict video play paces. With-

out using the pre-computed optical flow, this pretext task is more preferable

when the pre-training dataset scales to millions/trillions of data in real world

application. Experimental evaluations show that it achieves state-of-the-art per-

formance. In addition, we also introduce contrastive learning to push the model

towards discriminating difference paces by maximizing the agreement on similar

video content.

With all the works described above, this thesis provides novel insights in

self-supervised video representation learning, a newly developed yet promising

filed. The experimental results strongly validate the feasibility of leveraging un-

labeled data for video representation learning. We believe that the journey of

self-supervised learning just begins and its great potential is far from explored.
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摘要

自監督的視頻表示學習

有效的視頻表示是許多視頻理解任務（如動作識別，動作定位，視頻檢索等）

的根本。這些任務的應用範圍很廣，從家用的老人護理機器人到公共場所的大

規模視頻監控，不一而足。近來，受益於數據驅動方法的發展，視頻表示學習

已取得了顯著進展。巧妙的網絡結構，數百萬的由人類標註的視頻數據以及大

量的計算資源是取得成功的三個關鍵要素。但是，目前的有監督視頻表示學習

嚴重依賴於標註的數據，這使得它無法充分利用互聯網上大量免費的視頻資源，

因此其進一步發展受到了阻礙。

為了解決上述問題，本論文旨在以一種自監督的方式來學習視頻表示。自監

督視頻表示學習的基本解決方案是提出可以自動生成訓練標籤的適當代理任務。

先前的工作主要集中於將視頻順序預測用作代理任務，而本文提出了一種的全

新視角-通過時空統計回歸-來設計代理任務。它鼓勵神經網絡沿時空坐標系回歸

運動統計和外觀統計。與以前逐幀學習的視頻表示不同，該任務任務可以學習

時空特徵，因此適用於許多視頻分析任務。通過使用經典的 C3D 網絡，我們已

經可以取得出色的性能。

在提出的統計代理任務的基礎上，我們通過廣泛的實驗進一步進行深入調查

並發現三個關鍵的見解，以顯著提高自監督視頻表示學習的性能。首先，骨幹

網絡的結構在自監督學習中起著重要作用，但對於不同的代理任務無法保證最

佳模型。其次，下游任務效果與預訓練數據集規模呈對數線性相關，因此應在
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訓練樣本上仔細選擇訓練數據。為此，我們進一步採用漸進式學習策略來改善

視頻表示學習。第三，除了自監督視頻表示學習可以利用大量未標記視頻的主

要優勢外，以自監督方式學習的特徵比通過監督方式學習的特徵更具通用性和

可移植性。

考慮到在統計代理任務中光流的計算既佔用時間又耗費空間，因此我們進一

步提出了一種新的代理任務-視頻速度預測，該任務要求一個模型來預測視頻播

放速度。在不使用預先計算的光流的情況下，當在實際應用中將預訓練數據集

擴展到數百萬/萬億數據時，此代理任務將更適用。實驗評估表明它達到了最先

進的性能。此外，我們還引入了對比學習，以通過最大化相似視頻內容的一致

性來推動模型區分差異視頻速度。

基於上述所有工作，本論文為自監督的視頻表示學習提供了新的見解。這是

一個新興的但很有希望的領域。實驗結果驗證了利用未標記數據進行視頻表示

學習的可行性。我們認為，自監督學習的旅程才剛剛開始，其巨大潛力還沒有

得到探索。
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Chapter 1

Introduction

1.1 Background

Video understanding, from the computer vision perspective, aims to develop tech-

niques that allow a computer to analyze and understand the visual world from

videos, as human visual system does. Compared with images, video data con-

tains diverse information from both spatial and temporal dimensions, which is

beneficial for mitigating the ambiguities in visual understanding with spatial in-

formation only. For example, it is much easier for human to recognize a car

moving forwards or backwards from a video than from a single image.

While enjoying the advantages of diverse signals, on the other hand, video un-

derstanding confronts the essential challenge of processing high-dimensional data.

For example, a ten-seconds HD video contains around 155 million dimensional

elements. With 100 billion neurons [13] and elusive neural system [14], human

beings can easily analyze and understand the video content. However, this is

not a trivial task for a computer to solve, especially considering the limited com-

putational resources. It is natural to ask, can these high-dimensional videos be

compressed into compact and abstract representations without affecting the video

1
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content understanding so that they can be processed by a computer? The key to

this question is termed as video representation.

Powerful video representations serve as the most essential foundation for

many video understanding tasks, such as action recognition [11, 15], video re-

trieval [16, 17], action proposal and localization [18, 19, 20], video caption-

ing [21, 22], etc. Relative applications are in a wide rage, including elderly

caring robots, human-computer interaction, large scale video surveillance in pub-

lic places, sports video analysis, robot manipulation, to name a few cases.

Specifically, good video representations should preserve the vital and dis-

tinct information of videos while neglect those redundant and obscure signals.

Previously, extensive efforts have been made to develop handcrafted descrip-

tors/features as video representations. Some exemplary works include space-time

interest points (STIP) [23], HOG3D [24], improved dense trajectories (iDT) [25],

etc. While promising results have been achieved, these representations are usu-

ally elaborately designed by researchers to address the video understanding prob-

lem in a controlled and relatively simple setting. Therefore, video representations

designed by handcrafted approaches are usually vulnerable to diverse variations

in real-world applications.

To overcome the drawbacks of handcrafted video features, extensive studies

have been conducted these years on data-driven approaches for video represen-

tation learning. Typically, convolutional neural networks (CNN) have witnessed

its absolute success [11, 26, 27] with human-annotated labels, i.e., supervised

video representation learning. Researchers have developed a wide range of neural

networks [28, 10, 26] ingeniously, which aim to learn powerful spatio-temporal

representations for video understanding. Meanwhile, millions of labeled train-

ing data [29, 30] and powerful computational resources are also the fundamental

recipes for such a great success.
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𝑓

Action class: Playing Violin

Supervised Video Representation Learning 

𝑓

h

Self-supervised Video Representation Learning 
Predict future frames

Figure 1.1: Illustration of supervised and self-supervised video represen-
tation learning. Supervised video representation learning: training labels are
annotated by human beings. For example, regarding the typical action recogni-
tion problem, a neural network is trained with action classes annotated by human
for video representation learning. Self-supervised video representation learning:
training labels are usually self-contained and will be generated without human an-
notation. For example, a natural method for self-supervised video representation
learning is to predict the future frames.

However, supervised video representation learning is running into its bottle-

neck due to the heavy dependence on human-annotated video labels. Indeed,

obtaining a large number of labeled video samples requires massive human an-

notations, which is expensive and time-consuming. Whereas at the same time,

billions of unlabeled videos are available freely on the Internet. For example,

users in YouTube upload more than 500 hours videos every single minute [31].

Intuitively, one may wonder that can we learn video representations from unla-

beled data, i.e., unsupervised learning? And if so, how can we leverage the large

amount of unlabeled data for video representation learning?

To leverage the large amount of unlabeled video data, self-supervised video

representation learning is proved to be one promising methodology [32, 33]. Fig.

1.1 shows an illustration of supervised video representation learning and self-

supervised video representation learning. Regarding supervised video represen-
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tation learning, one typical training target is to recognize action classes of videos

and the training labels are annotated by human. While concerning self-supervised

video representation learning, the neural networks are not trained with human

annotated action class labels. Instead, the essential solution is to propose other

appropriate training targets, usually termed as pretext tasks, that can generate

free training labels automatically and encourage neural networks to learn pow-

erful video representations. For example, as shown in Fig. 1.1, to predict future

frames [6] can be a pretext task for self-supervised video representation learning.

The assumption here is that the neural network can only succeed in these pretext

tasks, including the future frame prediction task, when it understands the video

content and learns powerful video representations.

Self-supervised learning can be considered as a subset of unsupervised learning

since it does not require human annotated labels. While in order to evaluate

the video representations learned by self-supervised pretext tasks from unlabeled

video data, downstream tasks are usually adopted on some relatively small human-

annotated datasets, e.g., HMDB51 [35]. Typically, two types of application modes

are used in evaluation: transfer learning (as an initialization model) and feature

learning (as a feature extractor). Regarding transfer learning, backbone networks

pre-trained with pretext tasks will be used as weight initialization and finetuned

on human action recognition datasets [34, 35]. The other kind of evaluation mode

is to use the pre-trained models as feature extractors for the downstream video

analytic tasks, such as video retrieval [7, 36, 4], dynamic scene recognition [5, 37],

etc. Without finetuning, such a mode can directly evaluate the generality and

robustness of the learned features.
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1.2 Related Work

In this section, we first introduce the most related works to ours, including super-

vised video representation learning, self-supervised image representation learning,

and self-supervised video representation learning. Based on these works, we then

discuss the limitations of current self-supervised video representation learning

methods, which motivate our approaches presented in this thesis.

1.2.1 Supervised Video Representation Learning

Video understanding, especially action recognition, has been extensively studied

for decades, where video representation serves as the fundamental problem of

other video-related tasks, such as complex action recognition [38], action temporal

localization [18, 19, 20], video captioning [21, 22], etc.

Initially, various handcrafted local spatio-temporal descriptors are proposed

as video representations, such as STIP [23], HOG3D [24], etc. Wang et al. [25]

proposed improved dense trajectories (iDT) descriptors, which combined the ef-

fective HOG, HOF [39] and MBH descriptors [40], and achieved the best results

among all handcrafted features. Inspired by the impressive success of CNN in im-

age understanding problem [49, 48] and with the availability of large-scale video

datasets such as sports1M [29], ActivityNet [41], Kinetics-400 [11], Something-

something [42], and Charades [43], studies on developing convolutional neural

networks for video representation learning have attracted extensive interests.

According to the input modality, these network architectures for video repre-

sentation learning can be roughly divided into two categories: one is to directly

take RGB videos as inputs, while the other is to take both RGB videos and op-

tical flows as inputs. Tran et al. [10] extended the 2D convolution kernels to 3D

and proposed C3D network to learn spatio-temporal representations. Simonyan



1.2. RELATED WORK 6

𝑓1

𝑓2Optical 

flows

Action class

RGB 

videos

𝑓 Action class
RGB 

videos

Figure 1.2: Two classic neural network architectures for supervised video
representation learning. Top: a neural network directly takes the original
RGB videos as inputs and learns spatio-temporal features. Bottom: two stream
neural networks are used for video representation learning. One is appearance
branch, which takes the original RGB videos as inputs. The other is motion
branch, which takes pre-computed optical flows as inputs. And the output scores
are fused to generate the final predicted probabilities.

and Zisserman [28] proposed a two-stream network that extracts spatial features

from RGB inputs and temporal features from optical flows, followed by a fusion

scheme. Fig. 1.2 shows the illustration of these two classic network architectures.

Based on these two classic methods, a series of neural network architectures

are proposed to learn video representations, such as P3D [44], I3D [11], 3D-

ResNet [45], R(2+1)D [26], S3D-G [46], slowfast networks [27], etc. In this

thesis, instead of developing neural network architectures for video representation,

our contributions lie in the development of novel and effective pretext tasks for

self-supervised video representation learning. Therefore, following prior works [7,

114], we only use several popular networks, such as C3D [10] 3D-ResNet [45], etc.,

to validate the proposed pretext tasks. More details of the network architectures

are described in Sec.2.2.4.



1.2. RELATED WORK 7

(a) (b)

(c)

Figure 1.3: Three exemplary pretext tasks for self-supervised image rep-
resentation learning. (a) Context prediction [1]. (b) Image rotation predic-
tion [2]. (c) Gray image colorization [3].

1.2.2 Self-supervised Image Representation Learning

Self-supervised learning is first proposed and explored in image domain [1]. De-

spite the remarkable success achieved by image representation learning (image

classification) with human annotated labels [47, 48, 49, 50, 51], the further de-

velopment is reaching its bottleneck due to the lack of large amount of human-

annotated images. Consequently, self-supervised learning is becoming increas-

ingly attractive because of its great potential to leverage the large amount of

unlabeled data.

Doersch et al. [1] proposed to use context-based prediction as a pretext task.

Inspired by this work, various pretext tasks have been proposed for self-supervised

image representation learning. Noroozi et al. [52] extended the context prediction

task to a jigsaw puzzles task. Image colorization [3] proposed to cast the RGB
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image into LAB color space and then use the network to colorize the gray images.

Image rotation prediction [2] proposed to randomly rotate an image and then

ask a neural network to predict the corresponding rotation angles. Despite its

simplicity, the performance is quite remarkable. Some other pretext tasks include

inpainting [53], clustering [54], super resolution [55], virtual primitives counting

[56], etc. Fig. 1.3 illustrates the frameworks of these exemplary pretext tasks for

self-supervised image representation learning. Very recently, contrastive learning

in a self-supervised manner has shown great potential and achieved comparable

results with supervised visual representation learning [32, 66, 67, 68, 69, 70].

1.2.3 Self-supervised Video Representation Learning

Taking inspiration from the success of self-supervised image representation learn-

ing, researchers explore to extend the self-supervised learning concept from image

domain to video domain. In fact, self-supervised video representation learning

is of more urgent necessity, as the annotation of videos is much more time-

consuming compared with the annotation of images.

Various pretext tasks have been proposed for self-supervised video represen-

tation learning. Intuitively, a large number of studies [71, 72, 4] leveraged the

distinctive temporal information of videos and proposed to use frame sequence

ordering as their pretext tasks. Büchler et al. [73] further used deep reinforcement

learning to design the sampling permutations policy for order prediction tasks.

Gan et al. [5] proposed to learn video representations by predicting the optical

flow or disparity maps between consecutive frames.

Although these methods demonstrate promising results, the learned repre-

sentations are only based on one or two frames as they used 2D CNN for self-

supervised learning. Consequently, some recent works [69, 36, 7, 74] proposed to

use 3D CNNs as backbone networks for spatio-temporal representations learning,
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(a) (b)

(d)(c)

Figure 1.4: Four exemplary pretext tasks for self-supervised video rep-
resentation learning. (a) Video order verification [4]. (b) Optical flows and
disparity maps prediction [5]. (c) Future frames prediction [6]. (d) Video clips
order prediction [7].

among which [74, 7, 36] extended the 2D frame ordering pretext tasks to 3D video

clip ordering, and [69] proposed a pretext task to predict future frames embed-

ding. Fig. 1.4 illustrates the frameworks of several exemplary pretext tasks for

self-supervised video representation learning.

Self-supervised learning from cross-modality sources [75, 76, 33], e.g., video

and audio, also attracts considerable interests recently, as video sources inherently

contain the audio data. A typical pretext is to recognize the synchronization

between video and audio [75]. Alwassel et al. proposed to use cross-modal audio-

video clustering [33] and by pre-training on a extreme large dataset IG65M [77]

with millions of videos, this method for the first time achieved better performances

than supervised learning with kinetics-400 [30] on the action recognition task [34,

35]. In this thesis, we focus on the video modality only and leave the potential
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extension to multi-modality as our future research.

To summarize, prior pretext tasks proposed for self-supervised video repre-

sentation learning can be roughly divided into two categories: (1) generative ap-

proaches, such as flow fields prediction [5], future frame prediction [78, 6], etc. (2)

discriminative approaches, such as video order prediction [4, 71, 72, 7, 74], rota-

tion transformation prediction [79], etc. Usually the performances of generative

methods are not competitive with discriminative methods [7, 74]. We hypoth-

esis that this is because the generative methods are more inclined to waste the

model capacity towards learning the pretext task itself rather than learning the

desired transferable video representations. To this end, in this thesis, pretext

tasks proposed by us also fall into the discriminative category. Regarding the

discriminative approaches, prior pretext tasks are mainly focused on video order

prediction [4, 71, 72, 7, 74], which to some extent restricts the further develop-

ment of self-supervised video representation learning. To solve this problem, in

this thesis, we explore completely new perspectives and propose novel pretext

tasks for self-supervised video representation learning.

1.3 Contributions

In this thesis, we focus on the self-supervised video representation learning prob-

lem and aim to propose novel pretext tasks that can encourage neural networks

to learn expressive video representations without human annotated labels.

The contributions of this thesis are summarized as follows:

• We propose a novel pretext task, spaito-temporal statistics regression, for

self-supervised video representation learning. It aims to encourage a neural

network to regress both motion and appearance statistics along the spatio-

temporal axes. Unlike prior works that are concentrated on or to some
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extent confined to the video order conception, this pretext task presents a

completely new perspective for self-supervised video representation learn-

ing. It is also the first work that uses 3D convolutional neural network to

learn spatio-temporal features in a self-supervised manner. By using a clas-

sic and simple neural network C3D, the proposed spaito-temporal statistics

regression task can already achieve competitive results. Related Work has

been published in Proceedings of IEEE Conference on Computer Vision

and Pattern Recognition 2019 [80].

• We further propose a novel pretext task, video pace prediction, which, un-

like prior works including the proposed statistics pretext task, does not re-

quire the usage of pre-computed optical flow and thus, is more preferable in

real world applications with millions/trillions of unlabeled videos. In addi-

tion, we are also the first to introduce contrastive learning for self-supervised

video representation learning based on two strategies: same pace and same

context. It must be remarked that due to the simplicity and effectiveness of

the pace prediction task, it will motivate a wide rage of applications in the

future. For example, the pace prediction task can be used an auxiliary loss

to further improve video representation learning, or an exemplary task to

investigate the essence or principles of self-supervised video representation

learning. Related Work has been published in Proceedings of the European

conference on computer vision 2020 [81].

• Last but not least, by systematically investigating the architecture of back-

bone networks, the scale of pre-training dataset, and the learning strategies,

we drastically improve the performance of self-supervised video representa-

tion learning, for the first time outperforming fully supervised pre-training

on ImageNet. We extend the research scope from simply designing pretext
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tasks to in-depth investigation of network architectures, feature transfer-

ability, curriculum learning strategies, etc. We conduct extensive experi-

ments and uncover three fundamental insights to further boost performance

of self-supervised video representation learning: (1) Architectures of back-

bone networks play an important role in self-supervised learning. However,

no best model is guaranteed for different pretext tasks. In most cases,

the combination of 2D spatial convolution and 1D temporal convolution

achieves better results. (2) Downstream task performances are log-linearly

correlated with the pre-training dataset scale. Attentive selection should be

given on the training samples. (3) We demonstrate that features learned in

a self-supervised manner are more generalizable and transferable than fea-

tures learned in a supervised manner. Related work is submitted to IEEE

Transactions on Pattern Analysis and Machine Intelligence as an extension

of the proposed spatio-temporal statistics pretext task work [80].

With the works presented in this thesis, we provide novel insights and take

a lead in self-supervised video representation learning, a newly-developed yet

promising field. The code and pre-trained models of these works are all provided

online to facilitate future research.

1.4 Organization

In the remainder of this thesis, we first elaborate on the spatio-temporal statis-

tics regression pretext task, with a preliminary validation of its effectiveness on

several downstream tasks in Chapter 2. Then in Chapter 3, we take an in-depth

investigation on the proposed sptio-temporal statistics. Extensive experiments

are conducted to understand the proposed approach and to uncover crucial in-

sights on self-supervised video representation learning in a general perspective.
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In Chapter 4, we further propose a simple-yet-effective pretext task – pace pre-

diction, to dispense with the usage of optical flow in the spatio-temporal statistics

pretext task. Finally, in Chapter 5, we summarize this thesis and discuss on some

future directions based on the findings illustrated in the thesis.

2 End of chapter.



Chapter 2

Spatio-temporal Statistics

Regression for Self-supervised

Video Representation Learning

2.1 Motivation

Powerful video representations serve as the foundations for solving many video

content analysis and understanding tasks, such as action recognition [11, 15],

video retrieval [16, 17], video captioning [21, 22], etc. Various network architec-

tures [28, 11, 26] are designed and trained with massive human-annotated video

data to learn video representations for individual tasks specifically. While great

progresses have been made, supervised video representation learning is impeded

by a major obstacle that the annotation of video data is labour-intensive and

expensive, thus restricting supervised learning to relish a large quantity of free

video resources on the Internet.

To tackle the aforementioned challenge, multiple approaches [4, 72, 74, 7]

have emerged to learn more generic and robust video representations in a self-

14
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supervised manner. Neural network are first pre-trained with unlabeled videos

using some pretext tasks, where supervision signals are derived from input data

without human annotations. Then the learned representations can be employed

as weight initialization for training models or be directly used as features in

succeeding downstream tasks.

Among the existing self-supervised video representation learning methods,

video order verification/prediction [4, 71, 72, 74, 7] is one of the most popu-

lar pretext tasks. It randomly shuffles video frames and asks a neural network

to predict whether the video is perturbed or to rearrange the frames in a cor-

rect chronological order. By utilizing the intrinsic temporal characteristics of

videos, these pretext tasks have been shown useful for learning high-level seman-

tic features. However, the performances of these approaches are limited since

the contents of individual frames are mostly unexploited during learning. Other

approaches include flow fields prediction [5], future frame prediction [6, 82, 83],

dense predictive coding [69], etc. Although promising results have been achieved,

the above mentioned pretext tasks may lead to redundant feature learning to-

wards solving the pretext task itself, instead of learning generic representative

features for downstream video analytic tasks. For example, predicting the fu-

ture frame requires the network to precisely estimate each pixel in each frame

in a video clip. This increases the learning difficulties and causes the network

to waste a large portion of the capacity on learning features that may be not

transferable to high-level video analytic tasks.

In this work, we argue that a pretext task should be intuitive and relatively

simple to learn, enlightened by the human visual system, and mimicking the video

understanding process of humans. To this end, we propose a novel pretext task

to learn video representations by regressing spatio-temporal statistical summaries

from unlabeled videos. For instance, given a video clip, the network is encouraged



2.1. MOTIVATION 16

1 2 3

4 5 6

7 8 9

Motion (5, ) Appearance (2, Blue) Appearance (4, Green)

Figure 2.1: The main idea of the proposed spatio-temporal statistics.
Given a video sequence, we design a pretext task to regress the summaries de-
rived from spatio-temporal statistics for video representation learning without
human-annotated labels. Each video frame is first divided into several spatial
regions using different partitioning patterns like the grid shown in the figure.
Then the derived statistical labels, such as the region with the largest motion
and its direction (the red patch), the most diverged region in appearance and its
dominant color (the blue patch), and the most stable region in appearance and its
dominant color (the green patch), are employed as supervision signals to guide
the representation learning.

to identify the largest moving area with its corresponding motion direction, as

well as the most rapidly changing region with its dominant color. Fig. 2.1 shows

the main idea of the proposed spatio-temporal statistics. The idea is inspired

by the cognitive study on human visual system [84], in which the representation

of motion is found to be based on a set of learned patterns. These patterns are

encoded as sequences of‘snapshots’of body shapes by neurons in the form path-

way, and by sequences of complex optic flow patterns in the motion pathway. In

our work, these two pathways are defined as the appearance branch and motion

branch, respectively. In addition, we define and extract several abstract statis-

tical summaries accordingly, which is also inspired by the biological hierarchical

perception mechanism [84].

We design several spatial partitioning patterns to encode each spatial loca-

tion and its spatio-temporal statistics over multiple frames, and use the encoded
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vectors as supervision signals to train the neural network for spatio-temporal

representation learning. The novel objectives are simple to learn and informative

for the motion and appearance distributions in videos, e.g., the spatial locations

of the most dominant motions and their directions, the most consistent and the

most diverse colors over a certain temporal cube, etc. We conduct extensive ex-

periments with 3D convolutional neural networks to validate the effectiveness

of the proposed approach. The experimental results show that, compared with

training from scratch, pre-training using our approach demonstrates a large per-

formance gain for video action recognition problem. By transferring the learned

representations to dynamic scene recognition task, we further demonstrate the

generality and robustness of the video representations learned by the proposed

approach.

2.2 Proposed Approach

In the following, we introduce the implementation details of the proposed regress-

ing spatio-temporal statistics pretext task, including a preliminary illustration of

the statistical concepts (Sec. 2.2.1), formal definition of the motion statistics and

appearance statistics (Sec. 2.2.2 and 2.2.3), and the learning framework of the

pretext task (Sec. 2.2.4).

2.2.1 Statistical Concepts

Inspired by human visual system, we break the process of video contents under-

standing into several questions and encourage a CNN to answer them accordingly:

(1) Where is the largest motion in a video? (2) What is the dominant direction

of the largest motion? (3) Where is the largest color diversity and what is its

dominant color? (4) Where is the smallest color diversity, e.g., the potential back-
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ground of a scene, and what is its dominant color? The motivation behind these

questions is that the human visual system [84] is sensitive to large motions and

rapidly changing contents in the visual field, and only needs impressions about

rough spatial locations to understand the visual contents. We argue that a good

pretext task should be able to capture necessary representations of video contents

for downstream tasks, while at the same time does not waste model capacity on

learning too detailed information that is not transferable to other downstream

tasks. To this end, we design our pretext task as learning to answer the above

questions with only rough spatio-temporal statistical summaries, e.g., for spatial

coordinates we employ several spatial partitioning patterns to encode rough spa-

tial locations instead of exact spatial Cartesian coordinates. In the following, we

use a simple illustration to explain the basic idea.

Fig. 2.2 shows an example of a three-frame video clip with two moving objects

(blue triangle and green circle). A typical video clip usually contains much more

frames while here we use the three-frame clip example for a better understanding

of the key ideas. To roughly represent the location and quantify “where”, each

frame is divided into 4-by-4 blocks and each block is assigned to a number in an

ascending order starting from 1 to 16. The blue triangle moves from block 4 to

block 7, and the green circle moves from block 11 to block 12. Comparing the

moving distances, we can easily find that the motion of the blue triangle is larger

than the motion of the green circle. The largest motion lies in block 7 since it

contains moving-in motion between frames t and t + 1, and moving-out motion

between frames t + 1 and t + 2. Regarding the question “what is the dominant

direction of the largest motion?”, it can be easily observed that in block 7, the blue

triangle moves towards lower-left. To quantify the directions, the full angle 360◦ is

divided into eight angle pieces, with each piece covering a 45◦ motion direction

range, as shown on the right side in Fig.2.2. Similar to location quantification,
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Figure 2.2: The illustration of extracting statistical labels in a three-
frame video clip. Detailed explanation is presented in Sec. 2.2.1.

each angle piece is assigned to a number in an ascending order counterclockwise.

The corresponding angle piece number of “lower-left” is 5.

The above illustration explains the basic idea of extracting statistical labels

for motion characteristics. To further consider appearance characteristics “where

is the largest color diversity and its dominant color?”, both block 7 and block 12

change from the background color to the moving object color. When considering

that the area of the green circle is larger than the area of the blue triangle, we

can tell that the largest color diversity location lies in block 12 and the dominant

color is green.

Keeping the above ideas in mind, we next formally describe the approach

to extract spatio-temporal statistical labels for the proposed pretext task. We

assume that by training a spatio-temporal CNN to disclose the motion and ap-

pearance statistics mentioned above, better spatio-temporal representations can

be learned, which will benefit the downstream video analytic tasks consequently.
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2.2.2 Motion Statistics

Optical flow is a commonly used feature to represent motion information in many

action recognition methods [28, 11]. In the self-supervised learning paradigm,

predicting optical flow between every two consecutive frames is leveraged as a

pretext task to pre-train the deep model, e.g., [5]. Here we also leverage optical

flow estimated from a conventional non-parametric coarse-to-fine algorithm [85]

to derive the motion statistical labels that are regressed in our approach.

However, we argue that there are two main drawbacks when directly using

dense optical flow to compute the largest motion in our pretext task: (1) optical

flow based methods are prone to being affected by camera motion, since they rep-

resent the absolute motion [40, 86]. (2) Dense optical flow contains sophisticated

and redundant information for statistical labels computation, thus increasing the

learning difficulty and leading to network capacity waste for self-supervised repre-

sentation learning. To mitigate the influence from the above problems, we instead

seek to use a more robust and sparse feature – motion boundary [40].

Motion Boundary

Denote the horizontal and vertical components of optical flow as u and v, respec-

tively. Motion boundaries are derived by computing the x- and y-derivatives of

u and v, respectively:

mu = (ux, uy) = (∂u
∂x
, ∂u
∂y
), mv = (vx, vy) = ( ∂v

∂x
, ∂v
∂y
), (2.1)

where mu is the motion boundary of u and mv is the motion boundary of v.

As motion boundaries capture changes in the flow field, constant or smoothly

varying motion, such as motion caused by camera view change, will be cancelled

out. Specifically, given an N -frame video clip, (N − 1) ∗ 2 motion boundaries are
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Figure 2.3: Motion boundaries computation. For a given input video clip,
we first extract optical flow across each frame. For each optical flow, two motion
boundaries are obtained by computing gradients separately on the horizontal and
vertical components of the optical flow. The final sum-up motion boundaries are
obtained by aggregating the motion boundaries on u_flow and v_flow of each
frame separately.

computed based on N − 1 optical flows. Only motion boundaries information is

kept, as shown in Figure 2.3. Diverse video motion information can be encoded

into two summarized motion boundaries by summing up all these (N − 1) sparse

motion boundaries mu and mv:

Mu = (
N−1∑
i=1

ui
x,

N−1∑
i=1

ui
y), Mv = (

N−1∑
i=1

vix,

N−1∑
i=1

viy), (2.2)

where Mu denotes the summarized motion boundaries on horizontal optical flow

u, and Mv denotes the summarized motion boundaries on vertical optical flow v.

Spatial-aware Motion Statistical Labels

Based on motion boundaries, we next describe how to compute the spatial-aware

motion statistical labels that describe the largest motion location and the dom-
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Figure 2.4: Three different partitioning patterns. They are used to divide
video frames into different spatial regions. Each spatial block is assigned with a
number to represent its location.

inant direction of the largest motion. Given a video clip, we first divide it into

spatial blocks using partitioning patterns as shown in Fig 2.4. Here, we introduce

three simple yet effective patterns: pattern 1 divides each frame into 4×4 grids;

pattern 2 divides each frame into 4 different non-overlapped areas with the same

gap between each block; pattern 3 divides each frame by two center lines and

two diagonal lines. Then we compute summarized motion boundaries Mu and

Mv as described in Eq. 2.2. Motion magnitude and orientation of each pixel can

be obtained by casting Mu and Mv from the Cartesian coordinates to the Polar

coordinates.

We take pattern 1 as an example to illustrate how to generate the motion

statistical labels, while other patterns follow the same procedure. For the largest

motion location labels, we first compute the average magnitude of each block,

ranging from block 1 to block 16 in Pattern 1. Then we compare and find out

block B with the largest average magnitude from the 16 blocks. The index

number of B is taken as the largest motion location label. Note that the largest
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motion locations computed from Mu and Mv can be different. Therefore, two

corresponding labels are extracted from Mu and Mv, respectively.

Based on the largest motion block, we compute the dominant orientation label,

which is similar to the computation of motion boundary histogram (MBH) [40].

We divide 360◦ into 8 bins evenly, and assign each bin to a number to represent its

orientation. For each pixel in the largest motion block, we use its orientation angle

to determine which angle bin it belongs to and add the corresponding magnitude

value into the angle bin. The dominant orientation label is the index number of

the angle bin with the largest magnitude sum. Similarly, two orientation labels

are extracted from Mu and Mv, respectively.

Global Motion Statistical Labels

We further propose global motion statistical labels that provide complementary

information to the local motion statistics described above. Specifically, given a

video clip, the model is asked to predict the frame index (instead of the block

index) with the largest motion. To succeed in such a pretext task, the model is

encouraged to understand the video contents from a global perspective. Motion

boundaries mu and mv between every two consecutive frames are used to calculate

the largest motion frame index accordingly.

The implementation details of how to generate the motion statistical labels

are shown in Algorithm 1 in the following. By using this algorithm, with inputs

horizontal and vertical optical flow set (U ,V ), partitioning patterns P1, P2, and

P3, we will get motion statistical labels ymot as output.
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Algorithm 1 Generating motion statistical labels.
Input: Horizontal and vertical optical flow set (U ,V ), partitioning patterns

P1, P2, and P3.
Output: Motion statistical labels ymot.
1: Sample mini-batch optical flow clips with each clip containing N − 1 frames
2: for mini-batch optical flow clips {(u1,v1), . . . , (um,vm)} do
3: for i = 1 to m do
4: Initialize M i

u = (0, 0), M i
v = (0, 0)

5: for j = 1 to N − 1 do
6: mj

u = (
∂uj

i

∂x
,
∂uj

i

∂y
)

7: mj
v = (

∂vji
∂x

,
∂vji
∂y

)

8: M i
u = M i

u +mj
u

9: M i
v = M i

v +mj
v

10: end for
11: M i

u → (magiu, ang
i
u), M i

v → (magiv, ang
i
u).

12: for j = 1 to 3 do
13: Divide M i

u and M i
v by pattern Pj

14: Compute local motion statistical labels (pu, ou, pv, ov)
15: end for
16: Compute global motion statistical labels (Iu, Iv)
17: Obtain motion label yimot

18: end for
19: end for

2.2.3 Appearance Statistics

Spatio-temporal Color Diversity Labels

Given an N -frame video clip, we divide it into spatial video blocks by patterns

described above, same as the motion statistics. For an N -frame video block,

we compute the 3D distribution Vi in 3D color space of each frame i. We then

use the Intersection over Union (IoU) along the temporal axis to quantify the

spatio-temporal color diversity as follows:

IoUscore =
V1 ∩ V2 ∩ ... ∩ Vi... ∩ VN

V1 ∪ V2 ∪ ... ∪ Vi... ∪ VN

. (2.3)
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(a) 3D RGB color space (b) Unpacked RGB color space 

Figure 2.5: Illustration of RGB color space. (a) Illustration of the divided
3D color space with 8 bins. (b) An unpacked 2D RGB color space [8].

The largest color diversity location is the block with the smallest IoUscore,

while the smallest color diversity location is the block with the largest IoUscore.

In practice, we calculate the IoUscore on R, G, B channels separately and compute

the final IoUscore by averaging them.

Dominant Color Labels

Based on the two video blocks with the largest/smallest color diversity, we com-

pute the corresponding dominant color labels. We divide the 3D RGB color space

into 8 bins evenly and assign each bin with an index number. Then for each pixel

in the video block, based on its RGB value, we assign a corresponding color bin

number to it. Finally, color bin with the largest number of pixels is the label for

the dominant color. Fig. 2.5 shows the illustration of the color space.

Global Appearance Statistical Labels

We also propose global appearance statistical labels to provide supplementary

information. Particularly, we use the dominant color of the whole video (instead
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of a video block) as the global appearance statistical label. The computation

method is the same as the one described above.

The implementation details of how to generate the appearance statistical la-

bels are shown in Algorithm 2 in the following. By using this algorithm, with

inputs video set X, partitioning patterns P1, P2, and P3., we will get motion

statistical labels yapp as output.

Algorithm 2 Generating appearance statistical labels.
Input: Video set X, partitioning patterns P1, P2, and P3.
Output: Appearance statistical labels yapp.
1: Sample mini-batch video clips with each clip containing N frames
2: for mini-batch video clips {x1, . . . ,xm} do
3: for i = 1 to m do
4: for j = 1 to 3 do
5: Divide xi by pattern Pj, obtain blocks Bi

6: ALL_IoUscore = []
7: for block in Bi do
8: Compute IoUscore =

V1∩V2∩...∩Vi...∩VN

V1∪V2∪...∪Vi...∪VN

9: Add IoUscore to ALL_IoUscore

10: end for
11: pl = min(ALL_IoUscore)
12: ps = min(ALL_IoUscore)
13: Compute dominant color cl, cs by Bpl

i , B
ps
i

14: end for
15: Compute global dominant colorC
16: Obtain appearance label yiapp
17: end for
18: end for

2.2.4 Learning with Spatio-temporal CNNs

In the following, we first elaborate on the spatio-temporal CNN in details and

then present how to use the state-of-the-art backbone network for self-supervised

video representation learning with the proposed statistics pretext task.
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Figure 2.6: Three network architectures for video representation learning: (a)
CNN+LSTM [1, 9] (b) 3D CNN [10] (c) Two-stream 3D CNN [11].

Spatio-temporal CNN

Convolutional neural networks (CNN) usually consists of three kinds of building

blocks: convolutional layers, pooling layers, and fully connected layers. Given an

input image, convolutional layers, the core building block, slide across the input

volume and computes dot products between the entries of the filter and the in-

put volume. A pooling layer is usually adopted after each convolutional layer to

reduce the spatial size of the representation and the number of parameters in the

network, by sliding across the input volume and computing the average/maximum

value in the small window. The fully connected layer connects to all activations

in the previous layer and finally predicts the desired output. Finally, the CNN is

trained to minimize the training errors between the training targets and the pre-

dicted outputs iteratively. A comprehensive introduction of convolutional neural

networks can be found in [87].

Inspired by the great success of CNN in image domain [49, 48], researchers

seek to extend the convolutional neural networks to video domain, where the

fundamental problem is to model the temporal information and extract power-

ful spatio-temporal features by designing different backbone network architec-
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tures. Fig. 2.6 shows three basic network architectures for video representation

learning:(1) CNN+LSTM [88, 9], which extracts frame-level features by using a

2D CNN and then progressively uses recurrent layer, Long Short-Term Memory

(LSTM) [89], for temporal modeling. (2)3D CNN [10], which extends the 2D

convolutional kernels to 3D convolutional kernels for spatio-temporal represen-

tations learning. (3) Two stream 3D CNN [11], which extracts spatial features

from RGB inputs in spatial stream and temporal features from optical flows in

temporal stream, and finally fuses the performances from these two streams.

In this thesis, we mainly focus on the development of novel pretext tasks for

self-supervised video representation learning; therefore, we will not investigate

and improve the network architectures. Instead, we use these state-of-the-art

networks as off-the-shelf tools to learn video representations by our proposed

pretext tasks. Actually, the proposed approaches in this thesis is model-agnostic

and can be applied to any of the three basic network architectures. While in

this work, to align the experimental setup with prior works [5, 72], we first use

the classic 3D CNN, C3D [10], as the backbone network for self-supervised video

representation learning. In order to have a fair comparison with previous methods

which use CaffeNet [90] as their backbone networks, in this work, we adopt a light

C3D architecture with only five convolutional layers, five pooling layers and three

fully connected layers as described in [10]. The details of the network architecture

are shown in Table 2.1.

Learning Spatio-temporal Statistics

The proposed Spatio-temporal Statistics prediction task is formulated as a re-

gression problem. The whole framework of the proposed method is shown in

Figure 2.7. For each local motion pattern, 4 ground-truth labels are to be re-

gressed. pu, ou represent the spatial location of the largest magnitude based
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Table 2.1: The detailed network architectures of the proposed approach. We use
a light C3D [10] as the backbone network and follow the same network parameters
setting as in [10], where the authors empirically investigated the best kernel size,
depth, etc.

stage Motion Appearance Output sizes

Raw input - - 3 x 16 x 112 x 112

Conv 1 channel 64, kernel 3, stride 1 64 x 16 x 112 x 112

Pool 1 kernel 1,2,2, stride 1,2,2, pad 0 64 x 16 x 56 x 56

Conv 2 channel 128, kernel 3, stride 1 128 x 16 x 56 x 56

Pool 2 kernel 2 stride 2, pad 0 128 x 8 x 28 x 28

Conv 3 channel 256, kernel 3, stride 1 256 x 8 x 28 x 28

Pool 3 kernel 2 stride 2, pad 0 256 x 4 x 14 x 14

Conv 4 channel 256, kernel 3, stride 1 256 x 4 x 14 x 14

Pool4 kernel 2 stride 2, pad 0 256 x 2 x 7 x 7

Conv 5 channel 256, kernel 3, stride 1 256 x 2 x 7 x 7

Pool 5 kernel 2 stride 2, pad 1 256 x 1 x 4 x 4

Fc 6 2048 2048 2048

Fc 7 2048 2048 2048

Output Motion labels, 14 Appearance labels, 13 14/13
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Figure 2.7: The network architecture of the proposed method. Given a
video clip, 14 motion statistical labels and 13 appearance statistical labels are
to be regressed. The motion statistical labels are computed from summarized
motion boundaries. The appearance statistical labels are computed from input
video clip.

on Mu and its corresponding orientation; pv, ov represent the spatial location

of the largest magnitude based on Mv and its corresponding orientation. Two

global motion statistical labels to be regressed are Iu, Iv– the frame indices of

the largest magnitude sum w.r.t. mu and mv. For each local appearance pattern,

4 ground-truth labels are to be regressed. pl, cl are the spatial location of the

largest color diversity and its corresponding dominant color; ps, cs are the spatial

location of the smallest color diversity and its corresponding dominant color. The

dominant color of the whole video, i.e., the global appearance statistics label, to

be regressed is denoted as C. We use two branches to regress motion statistical

labels and appearance statistical labels separately. For each branch, two fully

connected layers are used similarly to the original C3D model design. And we

replace the final soft-max loss layer with a fully connected layer, with 14 outputs

for the motion branch and 13 outputs for the appearance branch.

L2-norm is leveraged as the loss function to measure the difference between
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target statistical labels and the predicted labels. Formally, the loss function is

defined as follow:

L = λmot∥ŷmot − ymot∥2 + λapp∥ŷapp − yapp∥2, (2.4)

where ŷmot, ymot denote the predicted and target motion statistical labels, and

ŷapp, yapp denote the predicted and target appearance statistical labels. λmot and

λapp are the weighting parameters that are used to balance the two loss terms.

2.3 Experimental Setup

We illustrate the basic experimental setup to validate the proposed method in

the following, including the datasets and the implementation details.

2.3.1 Datasets

In this work, we consider three datasets: UCF101 [34], HMDB51 [35], and YU-

PENN [37]. Specifically, we use UCF101 for self-supervised pre-training and the

other datasets for evaluation.

UCF101 dataset [34] consists of 13,320 video samples with 101 action classes.

It is collected from YouTube and actions are all naturally performed. Videos in

it are quite challenging due to the large variation in human pose and appearance,

object scale, light condition, camera view and etc. It contains three train/test

splits. In our experiment, we use the first train split to pre-train C3D, following

prior works [7, 4]. Regarding evaluation, we use train/test split 1.

HMDB51 dataset [35] is a relatively smaller dataset which contains 6766 videos

with 51 action classes. It also consists of three train/test splits. In our experiment,

to have fair comparison with others [7, 5], we use HMDB51 train split 1 to finetune
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the pre-trained models and test the action recognition accuracy on HMDB51 test

split 1.

YUPENN dataset [37] is a dynamic scene recognition dataset which contains

420 video samples of 14 dynamic scenes. We follow the recommended leave-one-

out evaluation protocol [37] when evaluating the proposed method.

2.3.2 Implementation Details

We implement our approach and conduct experiments using PyTorch frame-

work [91] on a single Titan RTX GPU [92] with 24GB memory, which is favorable

for processing video clips with longer length. During the implementation, we find

that the pre-processing of video data consumes most of the computational time.

To solve this problem, we use solid-state disks to store the video data, which dras-

tically reduces the video data reading time and consequently reduces the entire

training time. Typically, it only takes 12 hours to train the proposed pretext task

on the UCF101 dataset (self-supervised video representation learning) and an-

other 12 hours to finetune on the labeled UCF101 dataset (downstream task). In

the following, we elaborate on the implementation details of data augmentation

methods, training schedule, and parameters settings.

Pre-training. Following prior works [10, 26], when pre-training on the UCF101

dataset, the batch size is set to 30 and SGD is used as the optimizer. Regarding

data augmentation, both spatial jittering and temporal jittering are adopted.

Each frame in a video clip is resized to 128× 171 and then randomly cropped to

112 × 112. For each training video, 16 frames video clip are randomly sampled

from it. Regarding the most important hyper-parameter, initial learning rate, we

empirically find that the optimal one is 0.001 by grid search in a coarse-to-fine

manner as common practices [93]. Besides, we also adopt a learning rate decay

when the validation loss plateaus following prior works [10, 26]. Specifically, the
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Table 2.2: Comparison different patterns of motion statistics for action recogni-
tion on UCF101.

Initialization Accuracy (%)
Random 45.4
Motion pattern 1 53.8
Motion pattern 2 53.2
Moiton pattern 3 54.2

learning rate is divide it by 10 every 6 epochs and the training process is stopped

at 18 epochs.

Transfer learning. After pre-training with the pretext task, we first evaluate

the learned video representations on action recognition task by transfer learning.

Typically, following prior works [5, 4], the conv layers weights are retained from

the pre-trained network. And we re-initialize the fully-connected layers for action

classification. The neural network is then trained action recognition datasets,

UCF101 or HMDB51. The training schedule is the same as the pre-training

procedure, except the optimal initial learning rate is re-searched and set to 0.003.

When testing, center crop is applied and we report the average clip accuracy.

Feature Learning. We further evaluate the learned representations directly

without fine-tuning on the action recognition task. Specifically, the learned mod-

els are used as feature extractors and the learned representations are evaluated

on a dynamic scene recognition task following [5].

2.4 Ablation studies

In this section, we study the effectiveness of each component of the proposed

spatio-temporal statistics on action recognition downstream task. Specifically,

we use UCF101 training split 1 to pre-train the C3D backbone network. UCF101



2.4. ABLATION STUDIES 34

training/testing split 1 and HMDB51 training/testing split 1 are used for evalu-

ation.

Pattern

We study the performances of three partitioning patterns as described in Sec. 2.2.2.

Specifically, we use the motion statistics and appearance statistics follow the same

trend. As shown in Table 2.2, all the three patterns outperform the random ini-

tialization, i.e., train from scratch setting, by around 8%, which strongly proves

that our motion statistics is a very useful task. And all three patterns achieve

comparable results.

Local v.s. Global

We study the performances of local statistics, where is the largest motion loca-

tion?, global statistics, which is the largest motion frame?, and their ensemble.

As can be seen in Table 2.3, when the three local patterns are combined together,

we can further get around 1.5% improvement, compared to single pattern (Ta-

ble 2.2). The global statistics also serves as a useful supervision signal with an

improvement of 3%. All motion statistics labels (all three patterns and global

statistics) achieve 57.8% accuracy on the UCF101 dataset, which outperforms

the random initialization by 12.4%.

Motion, RGB, and Joint Statistics

We finally analyze the performances of motion statistics, appearance statistics,

and their combination, in Table 2.4. It can be seen that both appearance and

motion statistics serve as useful self-supervised signals for action recognition prob-

lem. But the motion statistics is more powerful as the temporal information ap-

pears to be more important for action recognition task. When combined motion
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Table 2.3: Comparison of local and global motion statistics for action recognition
on the UCF101 dataset.

Initialization Accuracy (%)
Random 45.4
Motion global 48.3
Motion pattern all 55.4
Motion pattern all + global 57.8

Table 2.4: Comparison of different supervision signals on the UCF101 and the
HMDB51 datasets.

Domain UCF101 acc.(%) HMDB51 acc. (%)
From scratch 45.4 19.7
Appearance 48.6 20.3
Motion 57.8 29.95
Joint 58.8 32.6

and appearance statistics, the performance can be further improved.

2.5 Transfer Learning on Action Recognition

We first evaluate the proposed approach and compare with other methods on

the action recognition task. Specificallyt, we compare with those methods who

use RGB video as inputs and directly quote the performance results from [5].

As shown in Table 2.5, our method achieves the state-of-the-art results both on

UCF101 and HMDB51 daatset. Compared with methods that are pre-trained

on UCF101 dataset, we improve 9.3% accuracy on HMDB51 than [5] and 2.5%

accuracy on UCF101 than [72]. The results strongly support that our proposed

predicting motion and appearance statistics task can really drive the CNN to

learn powerful spatio-temporal features. And our method can generate multi-
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Table 2.5: Comparison with the state-of-the-art self-supervised video representa-
tion learning methods on UCF101 and HMDB51.

Method UCF101 acc.(%) HMDB51 acc.(%)
DrLim [94] 38.4 13.4
TempCoh [95] 45.4 15.9
Object Patch [96] 42.7 15.6
Seq Ver.[4] 50.9 19.8
VGAN [6] 52.1 -
OPN [72] 56.3 22.1
Geometry [5] 55.1 23.3
Ours (UCF101) 58.8 32.6

frame spatio-temporal features transferable to many other video tasks.

We also provide the per-class accuracy on UCF101 and HMDB51 as shown in

Table 2.6 and Table 2.7 respectively. We compare two scenarios: (1) Train from

scratch. (2) Finetune on our self-supervised pre-trained model and highlight the

action classes which benefit a lot from the pre-trained model in the table.

Concerning UCF101, action classes that achieve impressive improvement are

BoxingSpeedBag, increasing 57.5% from 30% to 87.5%, SalsaSpin, increasing

54.2%, from 12.2% to 66.4%, PushUps, increasing 43.8%, from 0% to 43.8% and

etc.

As for HMDB51, action classes that achieve impressive improvement are

PullUp, increasing 46.5% from 15.7% to 62.2%, PushUp, increasing 39.8%, from

19.5% to 59.4%, Laugh, increasing 30.6%, from 12.5% to 43.2% and etc.

Notice that both dataset achieve impressive performance improvement on

action PushUp and Pullup. These two actions are quite challenging as PushUp is

body-motion only action, which has no appearance clue to be distinguished and

the background of PullUp is quite chaotic. However, when finetuned on our pre-

trained model, their performance imrpove a lot, which strongly supports that our
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Figure 2.8: Attention visualization. From left to right: A frame from a video
clip, activation based attention map of conv5 layer on the frame by using [12],
motion boundaries Mu of the whole video clip, and motion boundaries Mv of the
whole video clip.

the predicting motion-appearance statistics task really encourage CNN to learn

action-spefic spatio-temporal features that are beneficial for action classification

problems.

Visualization

To further validate that our proposed method really helps the C3D to learn video

related features, we visualize the attention map [12] on several video frames as

shown in Figure 3.7. It is interesting to note that for similar actions: Apply eye

makeup and Apply lipstick, C3D is just sensitive to the location that is exactly

the largest motion location as quantified by the motion boundaries as shown in

the right. For different scale motion, for example, the balance beam action, the

pre-trained C3D is also able to focus on the discriminative location.

We provide the activation-based attention maps of action classes which benefit
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a lot from the pre-trained model as shown in Figure 2.9

2.6 Feature Learning on Dynamic Scene Recog-

nition

We further evaluate the learned video representation on the feature learning

mode. We transfer the learned features to the dynamic scene recognition problem

based on the YUPENN dataset [37]. It contains 420 video samples of 14 dynamic

scenes, as shown in Fig. 2.10.

For each video in the dataset, first split it into 16 frames clips with 8 frames

overlapped. The spatio-temporal features are then extracted based on our self-

supervised C3D pre-trained model from the last conv layer. The video-label

representations are obtained by averaging each video-clip features, followed with

L2 normalization. A linear SVM is finally used to classify each video scene. We

follow the same leave-one-out evaluation protocol as described in [37].

We compared our methods with both hand-crafted features and other self-

supervised learning tasks as shown in Table 3.7. Our self-supervised C3D out-

performs both the traditional features and self-supervised learning methods. It

shows that although our self-supervised C3D is trained on a action dataset, the

learned weights has impressive transferability to other video-related tasks.

2.7 Discussion

In this work, we proposed a novel pretext task for self-supervised video represen-

tation learning, by regressing spatio-temporal statistics. It was inspired by human

visual system and aimed to break the video understanding process into learning

motion statistics and appearance statistics, respectively. The motion statistics



2.7. DISCUSSION 39

Figure 2.9: Visualization of activation-based attention maps on UCF101
dataset. From top to bottom: PlayingTabla, SalsaSpin, SoccerJuggling, Box-
ingSpeedBag, BoxingPunchingBag, JumpRope, PushUps, and PullUps.
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Figure 2.10: Several samples from the YUPENN dynamic scene dataset.
Motion in this dataset is relatively small compared with the action recognition
dataset.

characterized the largest motion location and the corresponding dominant mo-

tion direction. The appearance statistics characterized the diverse/stable color

space location and the corresponding dominant color. Both statistical labels were

designed along the spatio-temporal axes. We validated the proposed approach on

two downstream tasks: action recognition and dynamic scene recognition. The

experimental results showed that the proposed approach can achieve competitive

performances with other self-supervised video representation learning methods.

While promising results have been achieved, some fundamental questions are

remained unsolved. For example, will the performance be further improved by

using a larger pre-training dataset? In this chapter, we use UCF101 as the pre-

training dataset, which is a relatively small dataset and only contains around 10k

training videos. While it is necessary to evaluate the proposed approach on a



2.7. DISCUSSION 41

much larger dataset. As it is the promise of self-supervised video representation

learning to leverage large amount of unlabeled video data. In the next chapter, we

will conduct an in-depth investigation on the proposed spatio-temporal statistics

regression pretext task.

2 End of chapter.
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Action Scratch Finetune Action Scratch Finetune Action Scratch Finetune
class acc. (%) acc. (%) class acc. (%) acc. (%) class acc. (%) acc. (%)
ApplyEyeMakeup 41.0 67.9 Hammering 8.5 10.0 PommelHorse 37.4 74.2
ApplyLipstick 44.3 66.2 HammerThrow 47.3 54.3 PullUps 14.3 54.4
Archery 9.3 14.6 HandstandPushups 9.7 42.5 Punch 93.5 94.1
BabyCrawling 45.7 53.2 HandstandWalking 2.7 19.8 PushUps 0.0 43.8
BalanceBeam 45.8 51.4 HeadMassage 35.5 31.9 Rafting 68.5 63.2
BandMarching 82.7 73.7 HighJump 14.3 19.2 RockClimbingIndoor 64.0 76.7
BaseballPitch 75.4 51.8 HorseRace 85.7 91.5 RopeClimbing 27.4 48.5
BasketballDunk 33.9 42.0 HorseRiding 85.5 92.6 Rowing 66.2 72.2
Basketball 95.9 51.4 HulaHoop 43.3 68.5 SalsaSpin 12.2 66.4
BenchPress 36.7 79.9 IceDancing 87.5 94.1 ShavingBeard 9.0 12.7
Biking 49.9 58.7 JavelinThrow 49.5 38.0 Shotput 13.1 26.7
Billiards 95.1 96.0 JugglingBalls 21. 77.5 SkateBoarding 68.8 70.6
BlowDryHair 31.7 41.0 JumpingJack 62.1 82.8 Skiing 45.6 40.6
BlowingCandles 44.0 51.1 JumpRope 8.8 53.7 Skijet 61.7 67.6
BodyWeightSquats 22.7 52.8 Kayaking 58.3 63.7 SkyDiving 56.7 76.3
Bowling 82.4 84.6 Knitting 86.5 83.3 SoccerJuggling 17.5 73.4
BoxingPunchingBag 6.5 55.8 LongJump 58.3 50.6 SoccerPenalty 82.3 84.1
BoxingSpeedBag 30.0 87.5 Lunges 23.0 26.6 StillRings 62.5 64.6
BreastStroke 83.2 78.0 MilitaryParade 46.5 73.9 SumoWrestling 82.1 81.8
BrushingTeeth 4.0 7.3 Mixing 29.3 30.2 Surfing 79.6 84.5
CleanAndJerk 54.7 77.2 MoppingFloor 41.1 33.4 Swing 41.3 63.2
CliffDiving 44.3 49.0 Nunchucks 26.7 18.9 TableTennisShot 16.3 47.1
CricketBowling 29.6 49.6 ParallelBars 81.6 83.2 TaiChi 33.2 35.3
CricketShot 9.2 17.7 PizzaTossing 4.6 17.4 TennisSwing 70.5 58.8
CuttingInKitchen 22.1 44.5 PlayingCello 44.4 65.6 ThrowDiscus 35.5 63.1
Diving 84.9 93.2 PlayingDaf 13.8 41.3 TrampolineJumping 70.2 73.4
Drumming 49.9 53.8 PlayingDhol 47.6 60.0 Typing 15.6 55.6
Fencing 50.4 72.7 PlayingFlute 18.2 33.7 UnevenBars 87.4 77.9
FieldHockeyPenalty 69.4 56.6 PlayingGuitar 59.4 79.0 VolleyballSpiking 80.2 81.8
FloorGymnastics 55.7 60.6 PlayingPiano 90.3 82.7 WalkingWithDog 35.4 48.2
FrisbeeCatch 59.9 70.9 PlayingSitar 40.9 51.0 WallPushups 0.0 33.6
FrontCrawl 47.2 34.8 PlayingTabla 38.6 92.5 WritingOnBoard 41.1 70.3
GolfSwing 62.1 59.8 PlayingViolin 41.8 59.4 YoYo 4.9 25.4
Haircut 17.8 23.7 PoleVault 51.9 43.0

Table 2.6: Comparison of per class accuracy of UCF101 first test split on two
models: (1) Random initialization, train from scratch on UCF101 first train split.
(2) Pre-train on UCF101 first train split with self-supervised motion-appearance
statistics labels and then finetune on UCF101 first train split.
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Action Scratch Finetune Action Scratch Finetune Action Scratch Finetune
class acc. (%) acc. (%) class acc. (%) acc. (%) class acc. (%) acc. (%)
BrushHair 16.0 46.4 Hit 8.6 3.4 ShootBall 3.5 24.8
Cartwheel 7.6 16.8 Hug 44.0 35.0 ShootBow 34.2 43.7
Catch 28.3 48.3 Jump 0.0 8.5 ShootGun 0.0 4.5
Chew 39.5 34.6 Kick 0.0 14.3 Sit 13.1 27.7
Clap 0.0 35.4 KickBall 8.8 20.6 Situp 38.2 37.6
Climb 25.3 24.6 Kiss 61.4 60.3 Smile 13.3 19.2
ClimbStairs 14.3 11.3 Laugh 12.5 43.2 Smoke 9.7 27.9
Dive 17.1 33.3 Pick 3.2 9.5 Somersault 9.2 28.3
DrawSword 17.6 20.8 Pour 30.8 42.9 Stand 7.0 30.7
Dribble 28.6 59.3 Pullup 15.7 62.2 SwingBaseball 2.9 5.8
Drink 19.9 28.6 Punch 1.6 22.7 Sword 19.4 13.9
Eat 25.7 27.1 Push 22.3 34.5 SwordExercise 0.5 12.1
FallFloor 11.3 26.3 Pushup 19.5 59.4 Talk 45.0 40.4
Fencing 18.4 35.7 RideBike 53.1 42.2 Throw 1.1 1.1
FlicFlac 20.4 49.5 RideHorse 21.9 31.3 Turn 12.1 26.2
Golf 86.2 90.0 Run 10.0 29.1 Walk 8.0 16.7
Handstand 5.2 12.9 ShakeHands 10.7 32.0 Wave 6.7 5.9

Table 2.7: Comparison of per class accuracy of HMDB51 first test split on two
models: (1) Random initialization, train from scratch on HMDB51 first train
split. (2) Pre-train on UCF101 first train split with self-supervised motion-
appearance statistics labels and then finetune on HMDB51 first train split.

Table 2.8: Comparison with hand-crafted features and other self-supervised rep-
resentation learning methods for dynamic scene recognition problem on the YU-
PENN dataset.

Method [97] [37] [96] [4] [5] Ours
Accuracy (%) 86.0 80.7 70.47 76.67 86.9 90.2



Chapter 3

In-depth Investigation of

Spatio-temporal Statistics

3.1 Motivation

In chapter 2, we presented the basic idea of utilizing spatio-temporal statisti-

cal information for self-supervised video representation learning, where prelim-

inary experiments were conducted to validate the proposed approach by using

UCF101 [34] as the pre-training dataset. While satisfactory results have been

achieved, several important and fundamental questions remain unexplored. For

example, will the performance be further improved by using a much larger pre-

training dataset? It is a vital question to be investigated as leveraging large

amount of unlabeled video data in the real-world is the promise of self-supervised

video representation learning.

In this chapter, we conduct in-depth investigation on the proposed spatio-

temporal statistics and explore the following questions for a better understanding

of self-supervised video representation learning, aiming to bridge the performance

gap between supervised learning and self-supervised learning:

44
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• Will the performance be further improved by using a large scale pre-training

dataset?

In Chapter 2, we have shown that the proposed spatio-temporal regression

pretext task achieved competitive results with other self-supervised learn-

ing methods [5, 72] when using UCF101 [34] for pre-training, which is a

relatively small dataset containing around 9k videos. It is then natural to

ask that will the proposed statistics approach still be effective when using

a much larger pre-training dataset? To answer this question, we evaluate

the proposed spatio-temporal regression pretext task on a large dataset

kinetics-400 [30], which contains around 24k videos. In this case, we intend

to move towards the ultimate goal of self-supervised video representation

learning – to leverage the large amount of data available freely. We show

that by using kinetics-400, the performance can be further improved in

Sec. 3.5

• Does the backbone network architecture play an important role in self-

supervised video representation learning?

In Chapter 2, C3D [10] with only five convolutional layers was used as back-

bone network to evaluate the proposed approach. In this chapter, we extend

the proposed method to several modern backbone networks, i.e., C3D with

BN [98], 3D-ResNet [45] and R(2+1)D [26]. Extensive ablation studies are

conducted to investigate whether the performance enhancement comes from

the external network architectures or the internal self-supervised learning

methods. We show that the proposed spatio-temporal statistics regression

task outperforms other pretext tasks across all these backbone networks.

• Does each video sample contribute equally to self-supervised video represen-

tation learning?
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In this chapter, we further investigate the effectiveness of pre-training dataset

scale based on different proportions of the kinetics-400 dataset. We show

that using only 1/8 of the pre-training data can already achieve 1/2 of the

improvement, which suggests that attentive selection should be given on

the training samples. A curriculum learning strategy is introduced based

on the proposed spatio-temporal statistics to encourage the neural network

to learn from simple to difficult samples. We introduce scoring function

to sort the training samples and pacing functions to control the training

strategy.

• Is there any other advantages of self-supervised video representation learning

apart from the promise to leverage large amount of unlabeled data?

We further evaluate the learned video representations on a new downstream

task, video retrieval. Typically, the learned features are used directly for

video retrieval task without any transformation to evaluate the general-

ity of the video features. The experimental results show that compared

with compared with supervised learning, video representations learned by

the proposed pretext task achieve significant improvement, which indicates

that video representations learned in a self-supervised manner are more

generalizable and transferable.

To summarize, the main contributions of this chapter are three-fold: (1) We

introduce a curriculum learning strategy based on the proposed spatio-temporal

statistics, which is also inspired by the human learning process: from simple

samples to difficult samples. (2) Extensive ablation studies are conducted and

analyzed to reveal several insightful findings for self-supervised learning, including

the effectiveness of training data scale, network architectures, and feature gener-

alization, to name a few. (3) The proposed approach significantly outperforms
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previous approaches across all the studied network architectures in various video

analytic tasks. Code and models are made publicly available online to facilitate

future research.

The rest of this chapter is organized as follows: First, we elaborate on the

proposed curriculum learning strategy in Sec. 3.2 and three modern backbone

network architectures in Sec. 3.3. We then introduce the implementation de-

tails in Sec. 3.4,. In Sec. 3.5, we seek to understand the effectiveness of the

proposed method through comprehensive ablative analysis. We compare the pro-

posed method with other state-of-the-art methods on several downstream tasks,

including action recognition, video retrieval, dynamic scene recognition, and ac-

tion similarity labeling in Sec. 3.6. Finally, we discuss the limitation of current

work in Sec. 3.7 and explore to solve it in the next chapter.

3.2 Curriculum Learning

We further propose to leverage the curriculum learning strategy to improve the

learning performance. Curriculum learning is first proposed by Bengio et al. [99]

in 2009 and the key concept is to present the network with more difficult samples

gradually. It is inspired by the human learning process and proven to be effective

on many learning tasks [69, 76, 100]. Recently, Hacohen and Weinshall [101]

further investigated the curriculum learning in training deep neural networks and

proposed two fundamental problems to be resolved: (1) scoring function problem,

i.e., how to quantify the difficulty of each training sample; 2) pacing function

problem, i.e., how to feed the networks with the sorted training samples. In this

work, for self-supervised video representation learning, we describe our solutions

to these two problems as follows.
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Scoring Function

Scoring function f defines how to measure the difficulty of each training sample.

In our case, each video clip is considered to be easy or hard, based on the difficulty

to figure out the block with the largest motion, i.e., difficulty to regress the

motion statistical labels. To characterize the difficulty, we use the ratio between

magnitude sum of the largest motion block and magnitude sum of the entire

videos, as the scoring function f . When the ratio is large, it indicates that the

largest motion block contains the dominant action in the video and is thus easy

to find out the largest motion location, e.g., a man skiing in the center of a video

with smooth background change. While on the other hand, when the ratio is

small, it indicates that the action in the video is relatively diverse or the action is

less noticeable, e.g., two persons boxing with another judge walking around. See

Sec. 3.5.3 for more visualized examples.

Formally, given an N -frame video clip, two summarized motion boundaries

Mu and Mv are computed based on Eq. 2.2 and the corresponding magnitude

maps are denoted as Mmag
u and Mmag

v . Denote the largest motion blocks as Bu,

Bv and the corresponding magnitude maps as Bmag
u , Bmag

v . The scoring function

f is defined as the maximum ratio between the magnitude sum of Bu, Mu and

Bv, Mv:

f = max(
∑

Bmag
u∑

Mmag
u

,

∑
Bmag

v∑
Mmag

v
). (3.1)

Here we use the maximum ratio between the horizontal component u and

the vertical component v. This is because large magnitude in one direction can

already define large motion, e.g., a person running from left to right contains large

motion in horizontal direction u but small motion in vertical direction v. With

the scores computed from function f , training samples are sorted in a descending
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Figure 3.1: Illustration of three different pace functions. Single step (blue
line), fixed exponential pacing (red square dots), and varied exponential pacing
(green dashes) are presented.

order accordingly, representing the difficulty from easy to hard.

Pacing Function

After sorting the samples, the remaining question is how to split these samples

into different training steps. Prior works [69, 76, 100] usually adopt a two-stage

training scheme, i.e., training examples are divided into two categories: easy and

hard. In [101], the authors formally define such a problem as a pacing function

g, and introduce three stair-case functions: single step, fixed exponential pacing,

and varied exponential pacing as shown in Fig. 3.1, where they demonstrate that

these functions have comparable performances [101]. In our case, we adopt the

simple single step pacing function (we also tried other functions and similarly

found that they show comparable performances). Specifically, we use the first

half (descendingly sorted as aforementioned) examples as easy samples and the
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pacing function is defined as follows:

g =

0.5 ∗ S, if i < step_length

S, if i ≥ step_length

, (3.2)

where S is the sorted training clips, i is the training iteration, and step_length

is the number of the iterations to use the entire training samples S. In practice,

when the model is converged on the first half training samples, we will use the

entire S for the second-stage training.

3.3 Modern Spatio-temporal CNNs

We consider C3D [10], 3D-ResNet [45], and R(2+1)D[26] as our backbone net-

works to learn spatio-temporal features. In the preliminary version [80] of this

work, we use a light C3D network as described in [10]. It contains 5 convolutional

layers, 5 max-pooling layers, 2 fully-connected layers, and a soft-max loss layer,

which is similar to CaffeNet [90]. In this version, we further conduct extensive

experiments on C3D with BN and adopt two additional modern network archi-

tectures for video analytic tasks: 3D-ResNet and R(2+1)D. Fig. 3.2 presents a

simple illustration of these backbone networks. More details are illustrated in the

following.

C3D [10] network extends 2D convolutional kernel k × k to 3D convolutional

kernel k×k×k to operate on 3D video volumes. It contains 5 convolutional blocks,

5 max-poling layers, 2 fully-connected layers, and a soft-max layer in the end to

predict action class. Each convolutional block contains 2 convolutional layers

except the first two blocks. Batch normalization (BN) is also added between

each convolutional layer and ReLU layer.

3D-ResNet [45] is an 3D extension of the widely used 2D architecture ResNet [49],
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Figure 3.2: Illustration of backbone networks. We show a typical convolu-
tional block of each bakcbone networks. See more details in Sec. 3.3.

which introduces shortcut connections that perform identity mapping of each

building block. A basic residual block in 3D-ResNet (R3D) contains two 3D con-

volutional layers with BN and ReLU followed. Shortcut connection is introduced

between the top of the block and the last BN layer in the block. Following pre-

vious work [45], we use 3D-ResNet18 (R3D-18) as our backbone network, which

contains four basic residual blocks and one traditional convolutional block on the

top.

R(2+1)D is introduced by Tran et al. [26] recently. It breaks the original

spatio-temporal 3D convolution into a 2D spatial convolution and a 1D temporal

convolution. While preserving similar network parameters to R3D, R(2+1)D

outperforms R3D on the task of supervised video action recognition.

We model our self-supervised task as a regression problem. The proposed

framework is illustrated in Fig. 2.7, where the Backbone Network can be replaced

with each of the above-mentioned architectures and is thoroughly evaluated in the

experiment (see Sec. 3.5.1). L2-norm is leveraged as the loss function to measure

the difference between target statistical labels and the predicted labels. Formally,
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the loss function is defined as follow:

L = λm∥ŷm − ym∥2 + λa∥ŷa − ya∥2, (3.3)

where ŷm, ym denote the predicted and target motion statistical labels, and ŷa,

ya denote the predicted and target appearance statistical labels. λm and λa are

the weighting parameters that are used to balance the two loss terms.

3.4 Experimental Setup

3.4.1 Datasets

We conduct extensive experimental evaluations on multiple datasets in the fol-

lowing sections. In Sec. 4.4.1, we validate the proposed approach through exten-

sive ablation studies on action recognition downstream task using three datasets,

Kinetics-400 [30], UCF101 [34], and HMDB51 [35]. In Sec. 3.6, we demonstrate

the transferability of the proposed method and compare to other state-of-the-

art methods on four downstream tasks, including action recognition task and

video retrieval task on UCF101 and HMDB51 datasets, dynamic scene recogni-

tion task on YUPENN dataset [37], and action similarity labeling task on ASLAN

dataset [102].

Kinetics-400 (K-400) [30] is a large-scale human action recognition dataset

proposed recently, which contains around 306k videos of 400 action classes. It

is divided into three splits: training split, validation split and testing split. Fol-

lowing prior work [69], we use the training split as pre-training dataset, which

contains around 240k video samples.

UCF101 [34] is a widely used dataset which contains 13,320 video samples of

101 action classes. It is divided into three splits. Following prior work [7], we use
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the training split 1 as self-supervised pre-training dataset and the training/testing

split 1 for downstream task evaluation.

HMDB51 [35] is a relatively small action dataset which contains around 7,000

videos of 51 action classes. This dataset is very challenging as it contains large

variations in camera viewpoint, position, scale and etc. Following prior work [7],

we use the training/testing split 1 to evaluate the proposed self-supervised learning

method.

YUPENN [37] is a dynamic scene recognition dataset which contains 420

video samples of 14 dynamic scenes. We follow the recommended leave-one-out

evaluation protocol [37] when evaluating the proposed method.

ASLAN [102] is a video dataset focusing on the action similarity labeling

problem and contains 3,631 video samples of 432 classes. In this work, we use it

as a downstream evaluation task to validate the generality of the learned spatio-

temporal representations. During testing, following prior work [102], we use a

10-fold cross validation with leave-one-out evaluation protocol.

3.4.2 Implementation Details

Self-supervised Pre-training Stage

When pre-training on UCF101 dataset, video samples are first split into non-

overlapped 16 frame video clips and are randomly selected during pre-training.

While when pre-training on K-400, following prior works [74, 69], we randomly

select a consecutive 16-frame video clip and the corresponding 15-frame optical

flow clip from each video sample. Each video clip is reshaped to spatial size of

128 × 171. As for data augmentation, we randomly crop the video clip to 112 ×

112 and apply random horizontal flip for the entire video clip. Weights of motion

statistics λm and appearance statistics λa are empirically set to be 1 and 0.1. The



3.4. EXPERIMENTAL SETUP 54

batch size is set to 30 and we use SGD optimizer with learning rate 5 × 10−4,

which is divided by 10 for every 6 epochs and the training process is stopped at

20 epochs.

Supervised Fine-tuning Stage

During the supervised fine-tuning stage, weights of convolutional layers are re-

tained from the self-supervised pre-trained models and weights of the fully-connected

layers are re-initialized. The whole network is then trained again with cross-

entropy loss on action recognition task with UCF101 and HMDB51 datasets.

Image pre-processing procedure and training strategy are the same as the self-

supervised pre-training stage, except that the initial learning rate is changed to

0.003.

Evaluation

For action recognition task, during testing, video clips are resized to 128 × 171

and center-cropped to 112 × 112. We consider two evaluation methods: clip

accuracy and video accuracy. The clip accuracy is computed by averaging the

accuracy of each clip from the testing set. While the video accuracy is computed

by averaging the softmax probabilities of uniformly selected clips in each video [7]

from the testing set. In all of the following experiments, to have a fair comparison

with prior works [7, 36, 69], we use video accuracy to evaluate our approach while

in previous work, chapter 2, clip accuracy is used to evaluate our method.

We further evaluate the self-supervised pre-trained models by using them as

feature extractors and comparing with state-of-the-art methods on many other

downstream video analytic tasks, such as video retrieval, dynamic scene recogni-

tion, etc. This allows us to evaluate the generality of the learned saptio-temporal

representations directly without fine-tuning. More evaluation details are pre-
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sented in Sec. 3.6 for individual downstream tasks.

3.5 Ablation Studies and Analyses

In this section, we conduct extensive ablation studies to validate the proposed

method and investigate three important questions: (1) How does the type of

backbone network affect the performance of downstream tasks? (2) How does

the amount of pre-training data affect the self-supervised video representation

learning? (3) Does the proposed curriculum learning strategy help to further

improve the video representation learning?

3.5.1 Effectiveness of Backbone Networks

Recently, modern spatio-temporal representation learning architectures, such as

R3D-18 [45] and R(2+1)D [26], have been used to validate self-supervised video

representation learning methods [36, 7]. While the performances of downstream

tasks are significantly improved, this practice introduces a new variable, backbone

network, which could interfere with the evaluation of the pretext task itself. In

the following, we first evaluate our proposed method with these modern backbone

networks in Table 3.1. Following that, we compare our method with some recent

works [36, 7] on these three network architectures, in Fig. 4.7.

We present the performances of different backbone networks on UCF101

and HMDB51 datasets under two settings: without per-training and with pre-

training, in Table 3.1. When there is no pre-training, baseline results are obtained

by training from scratch on each result. When there is pre-training, backbone net-

works are first pre-trained on UCF101 dataset with the proposed method and then

used as weights initialization for the following fine-tuning. Best performances un-

der each setting are shown in bold. From the results we have the following obser-
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Table 3.1: Evaluation of three different backbone networks on the UCF101
dataset and HMDB51 dataset. When pre-training, we use our self-supervised
pre-training model as weight initialization.

Experimental setup Downstream task(%)
Pre-training Backbone #Params. UCF101 HMDB51

7 C3D 33.4M 61.7 24.0
X C3D 33.4M 69.3 34.2
7 R3D-18 14.4M 54.5 21.3
X R3D-18 14.4M 67.2 32.7
7 R(2+1)D 14.4M 56.0 22.0
X R(2+1)D 14.4M 73.6 34.1

vations: (1) Drastic improvement is achieved on both action recognition datasets

across three backbone networks. With C3D it improves UCF101 and HMDB51 by

9.6% and 13.8%; with R3D-18 it improves UCF101 and HMDB51 by 13.6% and

12.1%; with R(2+1)D it improves UCF101 and HMDB51 by 19.5% and 15.9%

remarkably. (2) Compared to C3D, R3D-18 and R(2+1)D benefit more from the

self-supervised pre-training. Despite C3D achieves the best performance in the

no pre-training setting, R(2+1)D finally achieves the highest accuracy on both

datasets in the self-supervised setting. (3) The proposed method using (2+1)D

convolution, i.e., R(2+1)D, achieves better performance than using 3D convo-

lution, i.e., R3D-18, while with similar number of network parameters. Similar

observation is also demonstrated in supervised action recognition task [26], where

R(2+1)D performs better than R3D-18 on K-400 dataset.

We further compare our method with two recent proposed pretext tasks

VCOP [7] and VCP [36] on these three backbone networks in Fig. 4.7. Three key

observations are illustrated: (1) The proposed self-supervised learning method

achieves the best performance across all three backbone networks on both UCF101

and HMDB51 datasets. This demonstrates the superiority of our method and
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Figure 3.3: Action recognition accuracy on three backbone networks (horizontal
axis) using four initialization methods.

shows that the performance improvement is not merely due to the usage of

the modern networks. The proposed spatio-temporal statistical labels indeed

drive neural networks to learn powerful spatio-temporal representations for ac-

tion recognition. (2) For all three pretext tasks, R(2+1)D enjoys the largest

improvement (compared to Random) for both datasets, which is similar to the

observation in the above experiments. (3) No best network architecture is guar-

anteed for different pretext tasks. R(2+1)D achieves the best performance with

our method and VCOP, while C3D achieves the best performance with VCP.

3.5.2 Effectiveness of Pre-training Data

In the following, we consider two scenarios to investigate the effectiveness of pre-

training data. One is comparison on different pre-training datasets with different

data scales. The other is comparison on the same pre-training dataset but with

different pre-training data size.
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Figure 3.4: Comparison of different pre-training datasets: UCF101 and K-400,
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Figure 3.5: Comparison of different pre-training dataset scales of K-400 across
three different backbone networks. Position “0” at the x-axis indicates random
initialization.
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Table 3.2: Results of different training data scale of K-400 on UCF101 and
HMDB51 dataset

Network Random 1/16 1/8 1/4 1/2 3/4 Full
U

C
F1

01 C3D 61.7 66.1 68.2 69.3 69.7 71.3 71.8

R3D-18 54.5 60.9 62.3 65.1 65.9 66.6 68.1

R(2+1)D 56.0 64.9 66.1 70.2 73.6 75.4 76.5

H
M

D
B5

1 C3D 24.0 28.8 30.2 33.7 35.4 37.0 37.8

R3D-18 21.3 25.6 29.7 32.5 33.4 34.2 34.4

R(2+1)D 22.2 25.8 26.2 30.7 35.6 37.5 37.9

Pre-training Dataset Analysis

We analyze the performances of training on a relatively small-scale dataset UCF101 [34]

and on a large-scale dataset K-400 [30]. The pre-trained models are evaluated on

two downstream datasets: UCF101 and HMDB51 w.r.t. three different backbone

networks as shown in Fig. 3.4. It can be seen that the performance could be

further improved when pre-training on a larger dataset across all the backbone

networks and on both downstream datasets. The effectiveness of larger dataset

is also demonstrated in prior works [69, 33].

Dataset Scale Analysis

We further consider to pre-train backbone networks on different proportions of

the same K-400 dataset. In practice, 1/k of K-400 is used for pre-training,

where k = 16, 8, 4, 2, 4/3, 1. To obtain the corresponding pre-training dataset,

for k = 16, 8, 4, 2, we select one sample from every k samples of the original full

K-400. As for k = 4/3, we first retain half of the K-400, and then select one

sample from every 2 samples in the remaining half dataset. We conduct exten-

sive experiments on three backbone networks and two downstream datasets as
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shown in Fig. 3.5. It can be seen from the figure that increase of pre-training

data scale does not lead to linear increase of the performance. The effectiveness

of the data scale would saturate towards using the full K-400 dataset. Taking

R(2+1)D as an example, compared with using full K-400, using half of the K-

400 only leads to inconsequential drop from the highest performance. Besides,

using 1/8 of the K-400 can already achieve half of the improvement compared

to training from scratch. similar observation is also demonstrated in supervised

transfer learning [103]. This suggests that when considering limited computing

resources, it would be important and interesting to adopt an attentive selection

of the training samples.

Table 3.3: Evaluation of the curriculum learning strategy. ↑ represents the first
half of the K-400 dataset while ↓ indicates the last half of the K-400 dataset.

Experimental setup Downstream tasks
Curr. Learn. Pre-training data UCF101 HMDB51

7 100 % K-400 76.5 37.9
7 50 % K-400 73.6 35.6
7 ↑, 50% K-400 (simple) 72.4 35.9
7 ↓, 50% K-400 (difficult) 72.8 32.1
X 100% K-400 77.8 40.5

3.5.3 Effectiveness of Curriculum Learning Strategy

The performances of the proposed curriculum learning strategy are shown in

Table 3.3. Compared with the baseline results (100% K-400), the performances

are further boosted on both UCF101 dataset(77.8% vs. 76.5% ) and HMDB51

dataset (40.5% vs. 37.9%) , which validates the effectiveness of the proposed

curriculum learning strategy. It is also interesting to note that when using the

first half of the sorted training samples, i.e., simple samples or the last half, i.e.,
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difficult samples, the performances on UCF101 dataset are both lower than the

random half of K-400. Such observations further validate that the careful selection

of training samples is of necessity in self-supervised representation learning.

Three video samples ranked from easy to hard are shown in Fig. 3.6. As

described in Sec. 3.2, difficulty to regress the motion statistical labels is used to

define the scoring function f to rank the training samples. Note that the appear-

ance statistics labels are not considered when computing f as they demonstrate

relatively limited improvement in action recognition task as shown in Table 2.4

in Chapter 2.

Figure 3.6: Three video samples of the curriculum learning strategy.
From left to right, the difficulty to regress the motion statistical labels of each
video clip is increasing. For each sample, the top three images are the first,
middle, and last frames of a video clip. In the bottom row, the first two images
are the corresponding optical flows and the last image is the summarized motion
boundaries Mu/Mv with the maximum magnitude sum.
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3.6 Comparison with State-of-the-art Approaches

In this section, we validate the proposed method both quantitatively and qual-

itatively, and compare with state-of-the-arts on four video understanding tasks:

action recognition (Sec. 3.6.1), video retrieval (Sec. 3.6.2), dynamic scene recog-

nition (Sec.3.6.3), and action similarity labeling (Sec. 3.6.4).

3.6.1 Action Recognition

Table 3.4 compares our method with other self-supervised learning methods on

the task of action recognition. We have the following observations: (1) Com-

pared with random initialization (training from scratch), networks fine-tuned

on pre-trained models with the proposed self-supervised method achieve signifi-

cant improvement on both UCF101 (77.8% vs. 56%) and HMDB51 (40.5% vs.

22.0%). Such results demonstrate the great potential of self-supervised video

representation learning. (2) Our method achieves state-of-the-art performance

on both datasets, improving UCF101 by 2.1% and HMDB51 by 4.8% compared

with DPC [69]. Note that the input size of DPC is 224 × 224 and when consid-

ering the same input size 112× 112 as ours, the proposed method improves DPC

on UCF101 by 9.6%. (3) Similar to the observation in Sec. 3.5.1, besides pretext

tasks, backbone networks also play an important role in self-supervised video

representation learning. For example, pretext tasks using 3D neural networks

significantly outperforms those using 2D neural networks.

Attention Visualization

Fig. 3.7 visualizes the attention maps on several video samples using [12]. For

action classes with subtle differences, e.g., Apply lipstick and Apply eye makeup,

the pre-trained model is sensitive to the location that is exactly the largest motion
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Table 3.4: Comparison with state-of-the-art self-supervised learning methods on
the action recognition task. ∗ indicates that the input spatial size is 224 × 224.

Method Pre-training Evaluation
Backbone #Params. Dataset UCF101 HMDB51

Random R(2+1)D 14.4M - 56.0 22.0
Fully supervised R(2+1)D 14.4M K-400 93.1 63.6
Object Patch[96] AlexNet 62.4M UCF101 42.7 15.6
ClipOrder[4] CaffeNet 58.3M UCF101 50.9 19.8
Deep RL[73] CaffeNet 58.3M UCF101 58.6 25.0
OPN [72] VGG 8.6M UCF101 59.8 23.8
VCP [36] C3D 34.4M UCF101 68.5 32.5
VCOP [7] R(2+1)D 14.4M UCF101 72.4 30.9
RotNet3D [79] R3D-18 33.6M K-400 62.9 33.7
ST-puzzle [74] R3D-18 33.6M K-400 65.8 33.7
DPC [69] R3D-18 14.2M K-400 68.2 34.5
DPC∗ [69] R3D-34 32.6M K-400 75.7 35.7

Ours R(2+1)D 14.4M K-400 76.5 37.9
Ours (CL) R(2+1)D 14.4M K-400 77.8 40.5
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𝑀𝑢

𝑀𝑣

Figure 3.7: Attention visualization. For each sample from top to bottom: A
frame from a video clip, activation based attention map of conv5 layer on the
frame by using [12], summarized motion boundaries Mu, and summarized motion
boundaries Mv computed from the video clip.

location as quantified by the summarized motion boundaries Mu and Mv. It

is also interesting to note that for the SumoWrestling video sample (the fifth

column), although three persons (two players and one judge) have large motion

in direction u, only players demonstrate larger motion in direction v. As a result,

the attention map is mostly activated around the players.

The performances on the action recognition downstream task strongly validate

the great power of self-supervised learning methods. The proposed pretext task

is demonstrated to be effective in driving backbone networks to learn spatio-

temporal features for action recognition. While to the goal of learning generic
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features, it is also important and interesting to evaluate the absolute effect of the

learned features without fine-tuning on the downstream task. In the following, we

directly evaluate the features on three different problems by using the networks

as feature extractors.

3.6.2 Video Retrieval

We evaluate spatio-temporal representations learned from the self-supervised

method on video retrieval task. Followed [36, 7], given a video, ten 16-frame clips

are first sampled uniformly. Then the video clips are fed into the self-supervised

pre-trained models to extract features from the last pooling layer (pool5). Based

on the extracted video features, cosine distances between videos of testing split

and training split are computed. Finally, the video retrieval performance is eval-

uated on the testing split by querying Top-k nearest neighbours from the training

split based on cosine distances. Here, we consider k to be 1, 5, 10, 20, 50. If the

test clip class label is within the Top-k retrieval results, it is considered to be

successfully retrieved.

Table 4.8 and Table 4.9 compare our method with other self-supervised learn-

ing methods on UCF101 dataset and HMDB51 dataset, respectively. It can

be seen that our method achieves the state-of-the-art results and outperforms

VCOP [7] and VCP [36] on both datasets across three different backbone net-

works (shown in bold). We are interested in if the performances could be further

improved, as the video features extracted from the pool5 layer tend to be more

task-specific while lack generalizability for the retrieval downstream task. To

validate this hypothesis, we extract video features from all the preceding pool-

ing layers and evaluate them on the video retrieval task. Typically, we compare

the self-supervised method (pre-trained on the proposed pretext task) and super-

vised method (pre-trained on the action labels) on HMDB51 dataset in Fig. 3.8
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Table 3.5: Comparison with state-of-the-art self-supervised learning methods on
the video retrieval task with the UCF101 dataset. The best results from pool5
w.r.t. each 3D backbone network are shown in bold. The results from pool4 on
our method are in italic and highlighted.

Method Top1 Top5 Top10 Top20 Top50

A
le

xN
et Jigsaw[52] 19.7 28.5 33.5 40.0 49.4

OPN[72] 19.9 28.7 34.0 40.6 51.6
Deep RL[73] 25.7 36.2 42.2 49.2 59.5

C
3D

Random 16.7 27.5 33.7 41.4 53.0
VCOP[7] 12.5 29.0 39.0 50.6 66.9
VCP[36] 17.3 31.5 42.0 52.6 67.7
Ours 20.5 39.6 50.8 62.2 76.7
Ours (p4) 30.1 49.6 58.8 67.6 78.5

R
3D

-1
8

Random 9.9 18.9 26.0 35.5 51.9
VCOP[7] 14.1 30.3 40.4 51.1 66.5
VCP[36] 18.6 33.6 42.5 53.5 68.1
Ours 23.9 43.9 54.3 64.9 78.2
Ours (p4) 28.7 47.7 58.3 67.8 78.5

R
(2

+
1)

D

Random 10.6 20.7 27.4 37.4 53.1
VCOP[7] 10.7 25.9 35.4 47.3 63.9
VCP[36] 19.9 33.7 42.0 50.5 64.4
Ours 21.2 40.1 51.5 62.5 77.1
Ours (p4) 26.2 45.9 56.5 66.3 78.4
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(UCF101 dataset follows the similar trend).

We have the following key observations: (1) In our self-supervised method,

with the evaluation layer going deeper, the retrieval performance would increase

to a peak (usually at pool3 or pool4 layer) and then decrease. Similar observa-

tion is also reported in self-supervised image representation learning [104]. The

corresponding performance of pool4 layer is reported in Table 4.8 and Table 4.9

(highlighted in blue). (2) R3D-18 is more robust to such performance decline as

its turning point occurs at pool4 layer while others usually occur at pool3 layers,

especially on the Top-20 and Top-50 experiments. (3) Our self-supervised method

significantly outperforms the supervised method, especially at deeper layers. This

suggests that features learned from our self-supervised method are more robust

and generic when transferring to the video retrieval task. Some qualitative video

retrieval results are shown in Fig. 3.9.

3.6.3 Dynamic Scene Recognition

We further study the transferability of the learned features on dynamic scene

recognition problem with the YUPENN dataset [37], which contains 420 video

samples of 14 dynamic scenes. Following prior work [10], each video sample

is first split into 16-frame clips with 8 frames overlapped. Then the spatio-

temporal feature of each clip is extracted based on the self-supervised pre-trained

models from pooling layers. In practice, similar to Sec. 3.6.2, we investigate the

best-performing pooing layer w.r.t. each backbone network in such a problem,

where for C3D and R(2+1)D, the best-performing layer is pool3; for R3D-18, the

best-performing layer is pool4. Next, video-level representations are obtained by

averaging the corresponding video-clip features, followed by L2 normalization.

Finally, a linear SVM is used for classification and we follow the same leave-one-

out evaluation protocol as described in [37].
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Table 3.6: Comparison with state-of-the-art self-supervised learning methods on
the video retrieval task with the HMDB51 dataset. The best results from pool5
w.r.t. each 3D backbone network are shown in bold. The results from pool4 on
our method are in italic and highlighted.

Method Top1 Top5 Top10 Top20 Top50

C
3D

Random 7.4 20.5 31.9 44.5 66.3
VCOP[7] 7.4 22.6 34.4 48.5 70.1
VCP[36] 7.8 23.8 35.5 49.3 71.6
Ours 10.6 26.1 39.7 55.0 77.2
Ours (p4) 13.9 33.3 44.7 59.5 78.1

R
3D

-1
8

Random 6.7 18.3 28.3 43.1 67.9
VCOP[7] 7.6 22.9 34.4 48.8 68.9
VCP[36] 7.6 24.4 36.6 53.6 76.4
Ours 8.4 23.1 35.6 50.4 72.1
Ours (p4) 14.2 32.2 44.1 60.2 81.3

R
(2

+
1)

D

Random 4.5 14.8 23.4 38.9 63.0
VCOP[7] 5.7 19.5 30.7 45.8 67.0
VCP[36] 6.7 21.3 32.7 49.2 73.3
Ours 9.3 23.8 36.2 50.5 74.1
Ours (p4) 12.1 30.0 41.4 56.7 78.0
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Figure 3.8: Evaluation of features from different stages of the network,
i.e., pooling layers, on the video retrieval task with the HMDB51
dataset. The dotted blue lines show the performances of the supervised pre-
trained models on the action recognition problem, i.e., random initialization
(Rnd). The orange lines show the performances of the self-supervised pre-trained
models with our method (Ours). Better visualization with color.
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(a)     Random (supervised learning)

(b)    Ours (self-supervised learning)

Figure 3.9: Qualitative results on video retrieval. From top to bottom:
three qualitative examples of video retrieval on the UCF101 dataset. From left
to right: one query frame from the testing split, frames from the top-3 retrieval
results based on the supervised pre-trained models, and frames from the top-3
retrieval results based on our self-supervised pre-trained models. The correctly
retrieved results are marked in blue while the failure cases are in orange. Better
visualization with color.
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Table 3.7: Comparison with state-of-the-art hand-crafted methods and self-
supervised representation learning methods on the dynamic scene recognition
task.

Method Hand-crafted Self-supervised YUPENN
SOE[37] X 80.7
SFA[106] X 85.5
BoSE[105] X 96.2
Object Patch[96] X 70.5
ClipOrder[4] X 76.7
Geometry[5] X 86.9
Ours, C3D X 96.7
Ours, R3D-18 X 93.8
Ours, R(2+1)D X 93.1

We compare our approach with state-of-the-art hand-crafted features and

other self-supervised learning methods in Table 3.7. It can be seen from the

table that the proposed method significantly outperforms the second best self-

supervised learning method Geometry [5] by 9.8%, 6.9%, and 6.2% w.r.t. C3D,

R3D-18, and R(2+1)D backbone networks, respectively. Besides, our method

also outperforms the best hand-crafted feature BoSE [105] by 0.5%. Note that

BoSE combined different sophisticated feature encodings (FV, LLC and dynamic

pooling) while we only use average pooling with a linear SVM. It is therefore

demonstrated that the spatio-temporal features learned from the proposed self-

supervised learning method have impressive transferability.

3.6.4 Action Similarity Labeling

In this section we introduce a challenging downstream task – action similarity la-

beling. The learned spatio-temporal representations are evaluated on the ASLAN

dataset [102], which contains 3,631 video samples of 432 classes. Unlike action

recognition task or dynamic scene recognition task that aims to predict the ac-



3.6. COMPARISON WITH STATE-OF-THE-ART APPROACHES 72

Table 3.8: Comparison with different hand-crafted features and fully-supervised
models on the ASLAN dataset.

Features Hand-crafted Sup. Self-sup. Acc.

C3D[10] X 78.3
P3D[44] X 80.8

HOF[102] X 56.7
HNF[102] X 59.5
HOG[102] X 59.8

Ours, C3D X 60.9
Ours, R3D-18 X 60.9
Ours, R(2+1)D X 61.6

tual class label, the action similarity labeling task focuses on the similarity of

two actions instead of the actual class label. That is, given two video samples,

the goal is to predict whether the two samples are of the same class or not. This

task is quite challenging as the test set contains never-before-seen actions [102].

To evaluate on the action similarity labeling task, we use the self-supervised

pre-trained models as feature extractors and use a linear SVM for the binary

classification, following prior work [10]. Specifically, given a pair of videos, each

video sample is first split into 16-frame clips with 8 frames overlapped and then

fed into the network to extract features from the pool3, pool4 and pool5 layers.

The video-level spatio-temporal feature is obtained by averaging the clip features,

followed by L2 normalization. After extracting three types of features for each

video, we then compute 12 different distances for each feature as described in

[102]. The computation methods of the 12 differences are shown in Table 3.9.

Then the three 12 (dis-)similarities are concatenated together to obtain a 36-

dimensional feature. Since the scales of each distance are different, we normalize

the distances separately into zero-mean and unit-variance, following [10]. A linear

SVM is used for classification and we use the 10-fold leave-one-out cross validation

same as [102, 10].
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Table 3.9: The 12 differences used to compute the dissimilarities between videos.
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Table 3.8 compares our method with full-supervised methods and hand-crafted

features. We set a new baseline for the self-supervised method as no previous

self-supervised learning methods have been validated on this task. We have the

following observations: (1) Our method outperforms the hand-crafted features:

HOF, HOG, and HNF(a composition of HOG and HOF). While there is still a big

gap between the full supervised method. (2) Unlike the observations in previous

experiments (e.g., action recognition), the performances of the three backbone

networks are comparable with each other. We suspect the reason lies on the fine-

tuning scheme leveraged in previous evaluation protocols, where the backbone

architecture plays an important role. As a result, we suggest that the proposed

evaluation on the ASLAN dataset (Table 3.8) could serve as a complementary

evaluation task for self-supervised video representation learning to alleviate the

influence of backbone networks.

3.7 Discussion

In this chapter, we further conducted an in-depth investigation of the proposed

spatio-temporal statistics regression pretext task. We uncovered three crucial in-

sights on self-supervised video representation learning:(1) Architectures of back-

bone networks play an important role in self-supervised learning. However, no

best model is guaranteed for different pretext tasks. In most cases, the combi-
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nation of 2D spatial convolution and 1D temporal convolution achieves better

results. (2) Downstream task performances are log-linearly correlated with the

pre-training dataset scale. Attentive selection should be given on the training

samples. (3) In addition to the main advantage of self-supervised video repre-

sentation learning, i.e., leveraging large number of unlabeled videos, we demon-

strate that features learned in a self-supervised manner are more generalizable

and transferable than features learned in a supervised manner. A curriculum

learning strategy was incorporated to further improve the representation learn-

ing performance. To validate the effectiveness of the proposed method, we con-

ducted extensive experiments on four downstream tasks of action recognition,

video retrieval, dynamic scene recognition, and action similarity labeling, over

three different backbone networks, C3D, R3D-18 and R(2+1)D. Our method was

shown to achieve state-of-the-art performance on various datasets accordingly.

When directly evaluating the learned features by using the pre-trained models

as feature extractors, the proposed approach demonstrated great robustness and

transferability to the downstream tasks and significantly outperformed the com-

peting self-supervised methods.

While remarkable results have been achieved, the proposed statistics pretext

task has a major drawback of using pre-computed optical flow, which is time and

space consuming. In the next chapter, we aim to overcome this drawback and

propo se a simple yet effective pretext task for self-supervised video representation

learning.

2 End of chapter.



Chapter 4

Play Pace Variation and

Prediction for Self-supervised

Representation Learning

4.1 Motivation

In Chapter 2 and 3, we have shown that the proposed spatio-temporal statistics

pretext task can achieve remarkable performance. However, the usage of pre-

computed motion channel, e.g., optical flow, could be an obstacle for this pretext

task to reach the ultimate goal to relish the large amount of unlabeled data, as the

computation of optical flow is both time and space consuming, especially when

the pre-training dataset scales to trillions of data. To alleviate such a problem,

in this chapter, we propose a simple and effective pretext task without leveraging

motion properties but using the original RGB videos as inputs.

Inspired by the rhythmic montage in film making, we observe that human

visual system is sensitive to motion pace and can easily distinguish different paces

once understanding the covered content. Such a property has also been revealed

75
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…… ……

Clip I Clip II Clip III

Question: Normal, Slow, or Fast?

Answer: Clip I: slow;  Clip II: Normal; Clip III: fast. 

Figure 4.1: Simple illustration of the pace prediction task. Given a video
sample, frames are randomly selected by different paces to formulate the final
training inputs. Here, three different clips, clip I, II, III are sampled by normal,
slow and fast pace randomly. Can you ascribe the corresponding pace label to
each clip? The answer is shown in the below.

in neuroscience studies [107, 108]. To this end, we propose a simple yet effective

task to perform self-supervised video representation learning: pace prediction.

Specifically, given videos played in natural pace, videos clips are generated with

different paces by different sampling rates. A learnable model then is trained to

identify which pace the input video clip corresponds to. As aforementioned, the

assumption here is that if the model is able to distinguish different paces, it has

to understand the underlying content. Fig. 4.1 illustrates the basic idea of the

proposed approach.

In the proposed pace prediction framework, we utilize 3D convolutional neu-

ral networks (CNNs) as our backbone network to learn video representations,

following prior works [7, 36]. Specifically, we investigated several alternative

architectures, including C3D [10], 3D-ResNet [26, 45], and R(2+1)D [26]. Fur-

thermore, we incorporate contrastive learning to enhance the discriminative capa-

bility of the model for video understanding. Extensive experimental evaluations
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with several video understanding tasks demonstrate the effectiveness of the pro-

posed approach. We also present a study of different backbone architectures as

well as alternative configurations of contrastive learning. The experimental re-

sult suggests that the proposed approach can be well integrated into different

architectures and achieves state-of-the-art performance for self-supervised video

representation learning.

The main contributions of this work are summarized as follows.

• We propose a simple yet effective approach for self-supervised video repre-

sentation learning by pace prediction. This novel pretext task provides a

solution to learn spatio-temporal features without explicitly leveraging the

motion channel, e.g., optical flow.

• We further introduce contrastive learning to regularize the pace prediction

objective. Two configurations are investigated by maximizing the mutual

information either between same video pace or same video context.

• Extensive experimental evaluations on three network architectures and two

downstream tasks across three datasets show that the proposed approach

achieves state-of-the-art performance and demonstrates great potential to

learn from tremendous amount of video data available online, in a simple

manner. Code and pre-trained models are made available.

4.2 Proposed Approach

4.2.1 Overview

We address the video representation learning problem in a self-supervised manner.

To achieve this goal, rather than training with human-annotated labels, we train a

model with labels generated automatically from the video inputs X. The essential
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problem is how to design an appropriate transformation g(·), usually termed as

pretext task, so as to yield transformed video inputs X̃ with human-annotated

free labels that encourage the network to learn powerful semantic spatio-temporal

features for the downstream tasks, e.g., action recognition.

In this work, we propose pace transformation gpac(·) with a pace prediction

task for self-supervised learning. Our idea is inspired by the concept slow motion,

which is widely used in film making for capturing a key moment and producing

dramatic effect. Humans can easily identify it due to their sensitivity of the

pace variation and a sense of normal pace. We explore whether a network could

also have such ability to distinguish video play pace. Our assumption is that a

network is not capable to perform such pace prediction task effectively unless it

understands the video content and learns powerful spatio-temporal features.

In the following, we first elaborate on the pace prediction task. Then we

introduce two possible contrastive learning strategies. Finally, we present the

complete learning framework with three different 3D network architectures.

4.2.2 Pace Prediction

We aim to train a model with pace-varying video clips as inputs and ask the model

to predict the video play paces. We assume that such a pace prediction task will

encourage the neural network to learn generic transferable video representations

and benefit downstream tasks. Fig. 4.2 shows an example of generating the

training samples and pace labels. Note that in this example, we only illustrate

one training video with five distinct sampling paces. Whereas in our final imple-

mentation, the sampling pace is randomly selected from several pace candidates,

instead of these five specific sampling paces.

As shown in Fig. 4.2, given a video in natural pace with 25 frames, training

clips will be sampled in different paces p. Typically, we consider five pace candi-
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Video in 

natural pace
1 2 3 5 6 7 8 9 10 114 12 13 14 15 16 17 18 19 20 21 22 23 24 25

12 13 14

18 19 7 8 9 10 11

102 4 6 8

11 14 17 20 23

Super slow, p =1/3

Random pace, random start frame

Slow, p =1/2

Normal, p =1

Fast, p =2

Super fast, p =3

Figure 4.2: Generating training samples and pace labels from the pro-
posed pretext task. Here, we show five different sampling paces, named as
super slow, slow, normal, fast, and super fast. The darker the initial frame is, the
faster the entire clip plays.

dates {super slow, slow, normal, fast, super fast}, where the corresponding paces

p are 1/3, 1/2, 1, 2, and 3, respectively. Start frame of each video clip is then

randomly generated to ensure the training clip will not exceed the total frame

number. Methods to generate each training clip with a specific p are illustrated

in the following:

• Normal motion, where p = 1, training clips are sampled consecutively from

the original video. The video play speed is the same as the normal pace.

• Fast motion, where p > 1, we directly sample a video frame from the original

video every p frames, e.g., super fast clip with p = 3 contains frames 11,

14, 17, 20 and 23. As a result, when we play the clip in nature 25 fps, it

looks like the video is speed up compared with the original pace.

• Slow motion, where p < 1, we put the sampled frames into the five-frames

clip very 1/p frames instead, e.g., slow clip with p = 1/2, only frames 1,

3, 5 are filled with sampled frames. Regarding the blank frames, one may

consider to fill it with preceding frame, or apply interpolation algorithms
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[109] to estimate the intermediate frames. In practice, for simplicity, we

use the preceding frame for the blank frames.

Formally, we denote the pace sampling transformation as g(x). Given a video

x, we apply g(x|p) to obtain the training clip x̃ with a training pace p. The pace

prediction pretext task is formulated as a classification problem and the neural

network f(x̃) is trained with cross entropy loss described as follow:

h = f(x̃) = f(gpac(x|p)), (4.1)

Lcls = −
M∑
i=1

yi(log exp(hi)∑M
j=1 exp(hj)

), (4.2)

where M is the number of all the pace rate candidates. .

Avoid shortcuts

As first pointed out in [1], when designing a pretext task, one must pay attention

to the possibility that a network could be cheating or taking shortcuts to accom-

plish the pretext task by learning low-level features, e.g., optical flows or frames

differences, rather than the desired high-level semantic features. Such observa-

tions are also reported in [69, 74]. In this work, to avoid the model to learn trivial

solutions to the pace prediction task, similar as [69], we use color jittering for a

video clip as shown in Fig.4.3. Empirically, we find that color jittering applied to

each frame achieves much better performance than to the entire video clip. We

believe that this is because if we apply color jittering for the entire clip, it would

be equivalent to apply nothing on the video clip.
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Figure 4.3: Illustration of color jittering used to avoid shortcuts. Top:
original input video frames. Bottom: video frames after color jittering. Typically,
we randomly apply color jittering for each frame in a video clip instead of applying
the same color jittering for the entire clip.

4.2.3 Contrastive Learning

To further enhance the pace prediction task and regularize the learning process,

we propose to leverage contrastive learning as an additional objective. Con-

trastive learning in a self-supervised manner has shown great potential and achieved

comparable results with supervised visual representation learning recently [32,

66, 67, 68, 69, 70]. It stems from Noise-Contrastive Estimation [110] and aims

to distinguish the positive samples from a group of negative samples. The fun-

damental problem of contrastive learning lies in the definition of positive and

negative samples. For example, Chen et al. [68] consider the pair with different

data augmentations applied to the same sample as positive, while Bachman et

al. [67] takes different views of a shared context as positive pair. In this work,

we consider two possible strategies to define positive samples: same context and

same pace. In the following, we elaborate on these two strategies.
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Same Context

We first consider to use clips from the same video but with different sampling

paces as positive pairs, while those clips sampled from different videos as negative

pair, i.e., content-aware contrastive learning.

Formally, given a mini-batch of N video clips {x1, . . . , xN}, for each video

input xi, we randomly sample n training clips from it by different paces, resulting

in an actual training batch size n ∗ N . Here, for simplicity, we consider n =

2, and the corresponding positive pairs are {(x̃i, pi), (x̃′
i, pi

′)}, where x̃i and x̃′
i

are sampled from the same video. Video clips sampled from different video are

considered as negative pairs, denoted as {(x̃i, pi), (x̃J , pJ )}. Each video clip is

then encoded into a feature vector zi in the latent space by the neural network

f(·). Then the positive feature vector pair is (zi, zi
′) while the negative pairs are

{(zi, zJ )}. Denote sim(zi, zi
′) as the similarity between feature vector zi and zi

′

and sim(zi, z
′
J ) as the similarity between feature vector zi and z′J , the content-

aware contrastive loss is defined as:

Lctr_sc = − 1

2N

∑
i,J

log exp(sim(zi, zi
′))∑

i

exp(sim(zi, zi′)) +
∑
i,J

exp(sim(zi, zJ ))
, (4.3)

where sim(zi, zi
′) is achieved by the dot product zi

⊤zi
′ between the two feature

vectors and so as sim(zi, z
′
J ).

Same Pace

Concerning the proposed pace prediction pretext task, another alternative con-

trastive learning strategy based on same pace is explored. Specifically, we con-

sider video clips with the same pace as positive samples regardless of the under-

lying video content, i.e., content-agnostic contrastive learning. In this way, the

contrastive learning is investigated from a different perspective that is explicitly
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Algorithm 3 Pace reasoning with contrastive learning on same video context.
Input: Video set X, pace transformation gpac(.), λcls, λctr, backbone network f .
Output: Updated parameters of network f .
1: for sampled mini-batch video clips {x1, . . . , xN} do
2: for i = 1 to N do
3: Random generate video pace pi, pi′
4: x̃i = gpac(xi|pi)
5: x̃′

i = gpac(xi|pi′)
6: zi = f(x̃i)
7: zi

′ = f(x̃′
i)

8: end for
9: for i ∈ {1, . . . , 2N} and j ∈ {1, . . . , 2N} do

10: sim(zi, zj) = zi
⊤zj

11: end for
12: Define Lctr_sc = − 1

2N

∑
i,J

log exp(sim(zi,zi
′))∑

i
exp(sim(zi,zi′))+

∑
i,J

exp(sim(zi,zJ ))
.

13:

14: Lcls = − 1
2N

∑ M∑
i=1

yi(log exp(hi)∑M
j=1 exp(hj)

)

15: L = λclsLcls + λctrLctr_sc

16: Update f to minimize L
17: end for

related to pace.

Formally, given a mini-batch of N video clips {x1, . . . , xN}, we first apply

the pace sampling transformation gpac(·) described above to each video input to

obtain the training clips and their pace labels, denoted as {(x̃1, p1),…, (x̃N , pN)}.

Each video clip is then encoded into a feature vector zi in the latent space by the

neural network f(·). Consequently, (zi, zj) is considered as positive pair if pi = pj

while (zi, zk) is considered as negative pair if pi ̸= pk, where j, k ∈ {1, 2, . . . , N}.

Denote sim(zi, zj) as the similarity between feature vector zi and zj and sim(zi, zk)

as the similarity between feature vector zi and zk, the contrastive loss is defined
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as:

Lctr_sp = − 1

N

∑
i,j,k

log exp(sim(zi, zj))∑
i,j

exp(sim(zi, zj)) +
∑
i,k

exp(sim(zi, zk))
, (4.4)

where sim(zi, zj) is achieved by the dot product zi
⊤zj between the two feature

vectors and so as sim(zi, zk).

Algorithm 4 Pace reasoning with contrastive learning on same video pace.
Input: Video set X, pace transformation gpac(.), λcls, λctr, backbone network f .
Output: Updated parameters of network f .
1: for sampled mini-batch video clips {x1, . . . , xN} do
2: for i = 1 to N do
3: Random generate video pace pi
4: x̃i = gpac(xi|pi)
5: zi = f(x̃i)
6: end for
7: for i ∈ {1, . . . , N} and j ∈ {1, . . . , N} do
8: sim(zi, zj) = zi

⊤zj
9: end for

10: Define Lctr_sp = − 1
N

∑
i,j,k

log exp(sim(zi,zj))∑
i,j

exp(sim(zi,zj))+
∑
i,k

exp(sim(zi,zk))

11:

12: Lcls = − 1
N

∑ M∑
i=1

yi(log exp(hi)∑M
j=1 exp(hj)

)

13: L = λclsLcls + λctrLctr_sp

14: Update f to minimize L
15: end for

Contrastive Learning Implementation Details

Fig. 4.4 demonstrates an illustration of implementation details of the two con-

trastive learning strategies, i.e., how to compute the contrastive loss described in

Eq. 4.3 and Eq. 4.4.

In terms of same context, suppose we have two video samples Aori and Bori

in natural/original pace, by applying two different paces on each video, we can
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Figure 4.4: Illustration of implementation details of the two contrastive
learning strategies.(a) Contrastive learning with same context. (b) Contrastive
learning with same pace. More details are presented in Sec. 4.2.3.

then obtain four training clips, A, A′, B, and B′. And the corresponding features

vectors are zA, z′
A, zB, and z

′
B. The similarity map of these four feature vectors is

computed by sim(zi, zj), where i, j ∈ {A,A′, B,B′} as shown in Fig. 4.4(a). The

denominator of Eq. 4.3 can be computed by the sum of the similarity map. Based

on the same context configuration, we then apply a mask on the similarity map

to retain those similarities for the computation of the numerator in Eq. 4.3. As

shown in Fig. 4.4(a), only (A,A′), (A′, A), (B,B′), and (B′, B) are considered to

be positive in the same context strategy. Therefore, the the numerator of Eq. 4.3

is computed by the sum of sim(zA, z
′
A), sim(z

′
A, zA), sim(zB, z

′
B), and sim(z

′
B, zB).

Similarly, in terms of same pace, suppose we have four video samples Aori,

Bori, Cori , and Dori play in natural/original pace, by applying pace transfor-

mation on each video, we can then obtain four training clips, A, B, C, D and

we suppose pace(B) = pace(C) = pace(D). The corresponding features vectors
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Figure 4.5: Illustration of the proposed pace prediction framework. (a)
Training clips are sampled by different paces. Here, g1, g3, g5 are illustrated as
examples for slow, super fast and normal pace. (b) A 3D CNN f is leveraged to
extract spatio-temporal features. (c) The model is trained to predict the specific
pace applied to each video clip. (d) Two possible contrastive learning strategies
are considered to regularize the learning process at the latent space. The symbols
at the end of the CNNs represent feature vectors extracted from different clips,
where the intensity represents different video pace.

are zA,zB, zC , and zD. The similarity map is computed by sim(zi, zj), where

i, j ∈ {A,B,C,D} as shown in Fig. 4.4(b). Typically, the sum of the similarity

map is the denominator of Eq. 4.4. Based on the same pace configuration, we

then apply a mask on the similarity map to retain those similarities for the com-

putation of the numerator in Eq. 4.4. As shown in Fig. 4.4(b), (B,C), (B,D),

(C,B), (C,D), (D,B) and (D,C) are considered to be positive in the same pace

strategy. Therefore, the the numerator of Eq. 4.4 is computed by the sum of

sim(zB, zC), sim(zB, zD), sim(zC , zB), sim(zC , zD), sim(zD, zB), and sim(zD, zC).

4.2.4 Network Architecture and Training

The framework of the proposed pace prediction approach is illustrated in Fig.

4.5. Given a set of unlabeled videos, we firstly sample various video clips with
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different paces. Then these training clips are fed into a deep model (3D CNN here)

for spatio-temporal representation learning. The final objective is to optimize

the model to predict the pace of each video clip and maximizing the agreement

(mutual information) between positive pairs at the same time.

In terms of the network architecture, we mainly consider three backbone net-

works, i.e. C3D [10], 3D-ReseNet [45, 26] and R(2+1)D [26] to study the ef-

fectiveness of the proposed approach. C3D is a classic neural network which

operates on 3D video volume by extending 2D convolutional kernel to 3D, with

5 convolutional blocks, 5 max-pooling layers, and 2 fully-connected layers. 3D-

ResNet (R3D) [45, 26] is an extension of the ResNet [49] architecture on videos.

A basic residual block in R3D contains two 3D convolutional layers with Batch-

Norm, ReLU, and shortcut connections. Following previous work [7, 36], we use

3D-ResNet18 (R3D-18) version for the R3D setting, which contains four basic

residual block and one traditional convolutional block on the top. R(2+1)D is

introduced by Tran et al. [26] that breaks the original spatio-temporal 3D con-

volution into a 2D spatial convolution and a 1D temporal convolution, which is

shown to have fewer network parameters with promising performance on video

understanding.

Apart from these three networks, we also use a state-of-the-art model S3D-

G [46] to further exploit the potential of the proposed approach. Fig. 4.6 shows

an illustration of the S3D-G. Similar as R(2+1)D, S3D-G also proposes to break

the heavy 3D convolution to the sequential combination of 2D convolution and

1D convolution. In addition, it introduces a gating layer after the temporal

convolutional layer, which can be viewed as self-attention on the outputs as shown

in Fig. 4.6(c).

By jointly optimizing the classification objective (Eq. 4.2) and the contrastive
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Figure 4.6: The illustration of backbone network S3D-G. We show a typical
convolutional block of S3D-G(ating). More details are presented in Sec. 4.2.4.

objective (Eq. 4.4 or 4.3), the final training loss is defined as:

L = λclsLcls + λctrLctr, (4.5)

where λcls, λctr are weighting parameters to balance the optimization of classifi-

cation and contrastive learning, respectively. The Lctr refers to either contrastive

with same pace Lctr_sp or with same context Lctr_sc.

4.3 Implementation Detials

Datasets

Following prior work, we use three datasets as follows:

UCF101 dataset [34] is a widely used benchmark in action recognition, con-

sisting of 13,320 video samples with 101 action classes. The covered actions are all

naturally performed as they are collected from YouTube. The dataset is divided

into three training/testing splits and in this work, following prior works [36, 69],
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training split 1 is used as pre-training dataset and the average accuracy of the

three testing splits are reported to have a fair comparison with others.

Kinetics-400 dataset [30] is a large action recognition benchmark proposed

recently, which consists of 400 human action classes and around 306k videos. It

is divided into three splits: training/validation/testing. In this work, we use the

training split as our pre-training dataset, which contains around 240k samples,

to validate our proposed method.

HMDB51 dataset [35] is a relatively small action recognition benchmark which

contains around 7,000 videos and 51 action classes. This dataset is very challeng-

ing as it contains large variations in camera viewpoint, position, scale etc. In this

work, we use it as a downstream evaluation benchmark to validate the proposed

self-supervised pretext task. It is divided into three training/testing splits and

we use the training/testing split 1 for ablation studies while when compared with

other methods, we report the average accuracy (see Table 4.7).

Self-supervised pre-training stage

When pre-training on the Kinetics-400 dataset, for each video input, we first

generate a frame index randomly and then start from the index, sample a con-

secutive 16-frame video clip. While when pre-training on UCF101 dataset, the

video inputs are first split into non-overlapped 16 frame video clips and we ran-

domly sample the prepared video clips during pre-training without index frame

generation. Each video clip is reshaped to 128 × 171. As for data augmentation,

we adopt spatial and temporal jittering by randomly cropping the video clip to

112 × 112 and flipping the whole video clip horizontally. We set the batch size

to 30 and use the SGD optimizer with learning rate 1 × 10−3. The leaning rate

is divided by 10 for every 6 epochs and the training process is stopped after 20

epochs. When jointly optimizing Lcls and Lctr, λcls is set to 1 and λctr is set to
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0.1.

Supervised fine-tuning stage

Regarding the action recognition task, during the fine-tuning stage, weights of

convolutional layers are retained from the self-supervised learning networks while

weights of fully-connected layers are randomly initialized. The whole network is

then trained with cross-entropy loss. Image pre-processing and training strategy

are the same as the self-supervised pre-training stage, except that the initial

learning rate is set to 3× 10−3.

Evaluation

During inference, follow previous evaluation protocol [7, 36], we sample 10 clips

uniformly from each video in the testing set of UCF101 and HMDB51. For each

clip, center crop is applied to obtain the input size 112×112. The predicted label

of each video is generated by averaging the softmax probabilities of all clips in

the video.

4.4 Ablation Studies

In this section, we firstly explore the best sampling pace design for the pace pre-

diction task. We apply it to three different backbone networks to study the effec-

tiveness of the pretext task and the network architectures. Experimental results

show that using pace prediction task alone, good performances can be already

achieved. When introducing the contrastive learning, same content configuration

performs much better than same pace configuration. By jointly optimizing the

pace prediction task and the same content contrastive learning, the performances

can be further improved. More details are illustrated in the following.
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4.4.1 Pace Prediction Task Design

Sampling pace

We investigate the best setting for pace prediction task with R(2+1)D backbone

network [26] in Table 4.1. Typically, to study the relationship between the com-

plexity of the pretext task and the effectiveness on the downstream task, we

first consider a relative pace design, i.e., only normal and fast motion. We use

R(2+1)D [26] as the bakcbone network to investigate the best design for pace

prediction, as shown in Table 4.1. Sampling pace p = [a, b] is designed to have

minimum pace a and maximum pace b with an interval 1. Sampling pace p = [a, b]

is designed to have minimum pace a and maximum pace b. It can be seen from

the table that with the increase of the maximum pace, namely the number of

training classes, the accuracy of the downstream action recognition task keeps

increase, until p = [1, 4]. When the sampling pace increases to p = [1, 6], the

accuracy starts to drop. We believe that this is because such a pretext task is

becoming too difficult for the network to learn useful semantic features. This

provides an insight on the pretext task design that a pretext task should not be

too simple or too ambiguous to solve, in consistent with the observations found

in [52, 71].

We report the pretext task performance (i.e., pace prediction accuracy) and

the downstream task performance (i.e., action recognition accuracy) on UCF101

dataset in Table 4.1. It can be seen from the table that with the increase of the

maximum pace, the pretext task becomes harder for the network to solve, which

leads to degradation of the downstream task. This further validate our claim in

the paper that a pretext task should be neither too simple nor too ambiguous.
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Table 4.1: Pace prediction accuracy w.r.t. different pace design.

Pre-training Method # Classes Pace rea. acc. UCF acc.
× Random - - 56.0
X p = [1, 3] 3 77.6 71.4
X p = [1, 4] 4 69.5 72.0
X p = [1, 5] 5 61.4 72.0
X p = [1, 6] 6 55.9 71.1

Table 4.2: Evaluation of slow pace.
Config. Pace # Classes UCF10 Acc.
Baseline [1,2,3,4] 4 73.9

Slow [1
4
,1
3
,1
2
,1] 4 72.6

Slow-fast [1
3
,1
2
,1,2,3] 5 73.9

Slow pace

In our paper, we propose two different methods to generate video clips with

slow pace: replication of previous frames or interpolation with existing algo-

rithms [109]. We choose the replication in practice as most modern interpo-

lation algorithms are based on supervised learning, while our work focuses on

self-supervised learning, forbidding us to use any human annotations.

As shown in Table 4.2, compared with normal and fast paces, if we use normal

and slow paces, the performance of the downstream task decreases (73.9→72.6).

While when combining with both slow and fast pace (absolute pace as described in

the paper), no performance change is observed, which again validates our choice

of the pace configuration.

Pace step

Based on the better performance achieved by the fast pace as shown above,

we take a closer look into the fast pace design, by considering different interval
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Table 4.3: Evaluation of different pace steps.
Step Pace # Classes UCF10 Acc.

1 [1,2,3,4] 4 73.9
2 [1,3,5,7] 4 74.9
3 [1,4,7,10] 4 74.7

steps, i.e., frame skip. For simplicity, in the paper we showcase with the step that

equals one (baseline) between each fast pace where the paces are {1,2,3,4}. Here

we further explore the interval steps of two and three so as to introduce larger

motion dynamics into the learning process. It can be observed from Table 4.3

that by increasing the interval steps, performance could be further improved, but

tends to saturate when the step is too large.

Forwards v.s. backwards.

It has been a long standing problem that whether a forward played video can be

considered as the same as its backward played version, in self-supervised video

representation learning. Some works [4, 72] argue that these two versions should

be attributed to the same semantic labels, while Wei et al. prone to distinguish

the forwards and backwards video [111]. In the following, we investigate these

two opinions based on our method as shown in Table 4.4.

As for the random backwards with four classes, we consider forwards and back-

wards videos as the same pace samples, while for backwards with eight classes,

they are considered to be different samples. It can be seen from the table that,

both configurations achieve lower performance than our baseline. We suspect

the reason is that to distinguish the backwards from forwards, it is essentially a

video order prediction task though in some order prediction work [72, 4] they are

considered to be the same. When combing the proposed pace reasoning task with

such an order prediction task, the network will be confused towards an ambiguous



4.4. ABLATION STUDIES 94

Table 4.4: Evaluation of video forwards v.s. backwards.
Config. Pace # Classes UCF10 Acc.
Baseline [1,2,3,4] 4 73.9

Rnd backwards [1,2,3,4] 4 73.0
Backwards [±1, ±2, ±3, ±4] 8 73.7

Table 4.5: Explore the best setting for pace prediction task. Sampling pace
p = [a, b] represents that the lowest value of pace p is a and the highest is b with
an interval of 1, except p = [1

3
, 3], where p is selected from {1

3
, 1
2
, 1, 2, 3}.

Color jittering Method #Classes UCF101
× Random - 56.0
× p = [1, 3] 3 71.4
× p = [1, 4] 4 72.0
× p = [1, 5] 5 72.0
× p = [1, 6] 6 71.1
X p = [1, 4] 4 73.9
X p = [1

3
, 3] 5 73.9

target. As a result, the downstream task performance is deteriorated.

Color jittering

We further validate the effectiveness of color jittering based on the best sampling

pace design p = [1, 4]. It can be seen from Table 4.1 that with color jittering, the

performance is further improved by 1.9%. It is also interesting to note that the

relative pace, i.e., p = [1, 4], achieves comparable result with the absolute pace,

i.e., p = [1
3
, 3], but with less number of classes. In the following experiments, we

use sampling pace p = [1, 4] along with color jittering by default.
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Figure 4.7: Action recognition accuracy on three backbone architectures (hori-
zontal axis) using four initialization methods.

4.4.2 Backbone Network

We validate the proposed pace prediction task without contrastive learning using

three alternative network architectures. Recently, some research works [7, 36]

validated their proposed self-supervised learning approaches on modern spatio-

temporal representation learning networks, such as R3D-18 [45, 26], R(2+1)D [26],

etc. This practice could influence the direct evaluation of the pretext tasks, as

the performance improvement can also come from the usage of more powerful

networks. Therefore, the effectiveness of the pace prediction task are studied on

three backbone networks and we also compare with some recent works on these

three networks, as shown in Fig. 4.7. For a fair comparison, following [7, 36], we

use the first training split of UCF101 as the pre-training dataset and evaluate on

training/testing split 1.

Some key observations are listed in the following: (1) The proposed ap-

proach achieves significant improvement over the random initialization across
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all three backbone networks. With C3D it improves UCF101 by 9.6%; with

R3D-18 it improves UCF101 by 13.6%; and more remarkable, with R(2+1)D it

improves UCF101 by 17.9%. (2) Although in the random initialization setting,

C3D achieves the best results, R(2+1)D and R3D-18 benefit more from the self-

supervised pre-training and R(2+1)D finally achieves the best performance. (3)

Without contrastive learning, the proposed pace prediction task already demon-

strates impressive effectiveness to learn video representations, achieving compa-

rable performance with current state-of-the-art methods VCP [36] and VCOP[7]

on C3D and R3D-18 and outperforms them when using R(2+1)D.

4.4.3 Contrastive learning

The performances of the two contrastive learning configurations are shown in

Table 4.6. Some key observations are listed for a better understanding of the

contrastive learning: (1) The same pace configuration achieves much worse re-

sults than the same context configuration. We suspect the reason is that in the

same pace configuration, as there are only four pace candidates p = [1, 4], video

clips are tend to belong to the same pace. Therefore, compared with the same

context configuration, much fewer negative samples are presented in the train-

ing batches, withholding the effectiveness of the contrastive learning. (2) Pace

prediction task achieves much better performance compared to each of the two

contrastive learning settings. This demonstrates the superiority of the proposed

pace prediction task.

When combining the pace prediction task with contrastive learning, similar

to the observation described above, regarding the same pace configuration, per-

formance is slightly deteriorated and regarding the same context configuration,

performance is further improved both on UCF101 and HMDB51 datasets. It

shows that appropriate multi-task self-supervised learning can further boost the
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Table 4.6: Evaluation of different contrastive learning configurations on both
UCF101 and HMDB51 datasets. ∗Note that paramters when adding a fc layer
only increase ∼4k, which is negligible compared to the original 14.4M parameters.

Experimental setup Downstream tasks
Pace Pred. Ctr. Learn. Network Configuration Params UCF101 HMDB51

X × R(2+1)D - 14.4M 73.9 33.8
× X R(2+1)D Same pace 14.4M 59.4 20.3
× X R(2+1)D Same context 14.4M 67.3 28.6
X X R(2+1)D Same pace 14.4M 73.6 32.3
X X R(2+1)D Same context 14.4M 75.8 35.0
X X R(2+1)D + fc Same context 14.4M∗ 75.9 35.9

performances, in consistent with the observation in [112]. Based on the same

video content configuration, we further introduce a nonlinear layer between the

embedding space and the final contrastive learning space to alleviate the direct

influence on the pace prediction learning. It is shown that such a practice can

further improve the performance (last row in Table 4.6).

4.5 Action Recognition

We compare our approach with other methods on the action recognition task in

Table 4.7. We have the following key observations: (1) Our method achieve the

state-of-the-art results on both UCF101 and HMDB51 dataset. When pre-trained

on UCF101, we outperform the current best-performing method PRP [113].

When pre-trained on K-400, we outperform the current best-performing method

DPC [69]. (2) Note that here the DPC method uses R3D-34 as their backbone

network and the video input size is 224× 224 while we only use 112× 112. When

the input size of DPC is at the same scale as ours, i.e., 128×128, we outperform it

by 8.9% on UCF101 dataset. We attribute such success to both our pace predic-

tion task and the usage of R(2+1)D. It can be observed that with R(2+1)D and
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Table 4.7: Comparison with the state-of-the-art self-supervised learning methods
on UCF101 and HMDB51 dataset (Pre-trained on video modality only).∗The
input video clips contain 64 frames.

Method Pre-training settings Evaluation
Network Input size Params Dataset UCF101 HMDB51

Fully supervised S3D-G 224× 224∗ 9.6M ImageNet 86.6 57.7
Fully supervised S3D-G 224× 224∗ 9.6M K-400 96.8 74.5
Object Patch[96] AlexNet 227× 227 62.4M UCF101 42.7 15.6
ClipOrder[4] CaffeNet 227× 227 58.3M UCF101 50.9 19.8
Deep RL[73] CaffeNet 227× 227 - UCF101 58.6 25.0
OPN [72] VGG 80× 80 8.6M UCF101 59.8 23.8
VCP [36] R(2+1)D 112× 112 14.4M UCF101 66.3 32.2
VCOP [7] R(2+1)D 112× 112 14.4M UCF101 72.4 30.9
PRP [113] R(2+1)D 112× 112 14.4M UCF101 72.1 35.0
Ours R(2+1)D 112× 112 14.4M UCF101 75.9 35.9
MAS[80] C3D 112× 112 27.7M K-400 61.2 33.4
RotNet3D [79] R3D-18 224× 224 33.6M K-400 62.9 33.7
ST-puzzle [74] R3D-18 224× 224 33.6M K-400 65.8 33.7
DPC [69] R3D-18 128× 128 14.2M K-400 68.2 34.5
DPC [69] R3D-34 224× 224 32.6M K-400 75.7 35.7
Ours R(2+1)D 112× 112 14.4M K-400 77.1 36.6
SpeedNet [114] S3D-G 224× 224∗ 9.6M K-400 81.1 48.8
Ours S3D-G 224× 224∗ 9.6M UCF101 87.1 52.6
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Figure 4.8: Attention visualization of the conv5 layer from self-supervised pre-
trained model using [12]. Attention map is generated with 16-frames clip inputs
and applied to the last frame in the video clips. Each row represents a video
sample while each column illustrates the end frame w.r.t. different sampling pace
p.

only UCF101 as pre-train dataset, VCOP [7] can achieve 72.4% on UCF101 and

30.9% on HMDB51. (3) Backbone networks, input size and clip length do play

important roles in the self-supervised video representation learning. As shown in

the last row, by using the S3D-G [46] architecture with 64-frame clips as inputs,

pre-training only on UCF101 can already achieve remarkable performance, even

superior to fully supervised pre-training on ImageNet (on UCF101).

To further validate the proposed approach, we visualize the attention maps

based on the pre-trained R(2+1)D model, as shown in Fig. 4.8. It can be seen

from the attention maps that the neural network will pay more attention to the
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Table 4.8: Comparison with state-of-the-art nearest neighbour retrieval results
on UCF101 benchmark.

Method Top1 Top5 Top10 Top20 Top50
A

le
xN

et Jigsaw[52] 19.7 28.5 33.5 40.0 49.4
OPN[72] 19.9 28.7 34.0 40.6 51.6
Deep RL[73] 25.7 36.2 42.2 49.2 59.5

C
3D

Random 16.7 27.5 33.7 41.4 53.0
VCOP[7] 12.5 29.0 39.0 50.6 66.9
VCP[36] 17.3 31.5 42.0 52.6 67.7
Ours (p5) 20.0 37.4 46.9 58.5 73.1
Ours(p4) 31.9 49.7 59.2 68.9 80.2

R
3D

-1
8

Random 9.9 18.9 26.0 35.5 51.9
VCOP[7] 14.1 30.3 40.4 51.1 66.5
VCP[36] 18.6 33.6 42.5 53.5 68.1
Ours (p5) 19.9 36.2 46.1 55.6 69.2
Ours(p4) 23.8 38.1 46.4 56.6 69.8

R
(2

+
1)

D

Random 10.6 20.7 27.4 37.4 53.1
VCOP[7] 10.7 25.9 35.4 47.3 63.9
VCP[36] 19.9 33.7 42.0 50.5 64.4
Ours (p5) 17.9 34.3 44.6 55.5 72.0
Ours(p4) 25.6 42.7 51.3 61.3 74.0

motion areas when learning the pace prediction task. It is also interesting to note

that in the last row, as attention map on p = 4 computes the layer information

spanning 64 frames, it is activated at several motion locations.

4.6 Video Retrieval

We further validate the proposed approach on the video retrieval task. Basically,

we follow the same evaluation protocol described in [36, 7]. Ten 16-frames clips

are sampled from each video and then go through a feed-forward pass to generate

features from the last pooling layer (p5). For each clip in the testing split, the
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Table 4.9: Comparison with state-of-the-art nearest neighbor retrieval results on
HMDB51 benchmark.

Method Top1 Top5 Top10 Top20 Top50

C
3D

Random 7.4 20.5 31.9 44.5 66.3
VCOP[7] 7.4 22.6 34.4 48.5 70.1
VCP[36] 7.8 23.8 35.5 49.3 71.6
Ours (p5) 8.0 25.2 37.8 54.4 77.5
Ours(p4) 12.5 32.2 45.4 61.0 80.7

R
3D

-1
8

Random 6.7 18.3 28.3 43.1 67.9
VCOP[7] 7.6 22.9 34.4 48.8 68.9
VCP[36] 7.6 24.4 36.6 53.6 76.4
Ours (p5) 8.2 24.2 37.3 53.3 74.5
Ours(p4) 9.6 26.9 41.1 56.1 76.5

R
(2

+
1)

D

Random 4.5 14.8 23.4 38.9 63.0
VCOP[7] 5.7 19.5 30.7 45.8 67.0
VCP[36] 6.7 21.3 32.7 49.2 73.3
Ours (p5) 10.1 24.6 37.6 54.4 77.1
Ours(p4) 12.9 31.6 43.2 58.0 77.1
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Table 4.10: Comparison of different pooling layers video retrieval results on
UCF101 and HMDB51 dataset.

Layer UCF101 HMDB51
Top1 Top5 Top10 Top20 Top50 Top1 Top5 Top10 Top20 Top50

C
3D

pool1 21.3 33.7 41.1 48.9 60.4 8.3 22.9 34.1 49.3 71.6
pool2 23.2 37.3 46.0 55.1 67.5 8.8 24.8 37.8 52.8 75.9
pool3 30.2 46.8 55.9 64.9 78.6 12.2 31.1 44.5 60.1 79.6
pool4 31.9 49.7 59.2 68.9 80.2 12.5 32.2 45.4 61.0 80.7
pool5 20.0 37.4 46.9 58.5 73.1 8.0 25.2 37.8 54.4 77.5

R
3D

-1
8

pool1 20.7 32.0 38.1 45.3 57.8 7.9 22.6 33.3 48.0 68.8
pool2 21.1 33.5 39.7 46.7 58.4 8.5 24.4 36.2 50.6 71.5
pool3 22.0 35.3 43.4 53.4 66.9 8.4 24.1 37.1 52.9 76.5
pool4 23.8 38.1 46.4 56.6 69.8 9.6 26.9 41.1 56.1 76.5
pool5 19.9 36.2 46.1 55.6 69.2 8.2 24.2 37.3 53.3 74.5

R
(2

+
1)

D

pool1 21.4 34.3 41.2 49.0 62.4 8.4 22.7 35.5 51.4 71.5
pool2 26.4 40.7 49.1 58.1 70.5 13.1 29.8 41.0 55.0 74.1
pool3 26.3 44.2 53.9 63.3 75.7 13.1 33.2 46.0 59.9 77.9
pool4 25.6 42.7 51.3 61.3 74.0 12.9 31.6 43.2 58.0 76.9
pool5 17.9 34.3 44.6 55.5 72.0 10.1 24.6 37.6 54.4 77.1

Topk nearest neighbors are queried from the training split by computing the cosine

distances between every two feature vectors. If the test clip class label is within

the Topk retrieval results, it is considered as correct. And the final accuracy is

computed by averaging all the test results. We consider k to be 1, 5, 10, 20, 50.

To align the experimental results with prior works [36, 7] for fair comparison, we

use pre-trained models from the pace prediction task on UCF101 dataset. As

shown in Table 4.8 and Table 4.9, our method outperforms the VCOP [7] and

VCP [36] in most cases on the two datasets across the three backbone networks.

In practice, we also find that significant improvement can be achieved by using

the second last pooling layer (p4). The detailed performances of each pooling

layer are shown in Table 4.10.
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4.7 Discussion

In this chapter, we proposed a new perspective towards self-supervised video rep-

resentation learning, by pace prediction. Contrastive learning was also incorpo-

rated to further encourage the networks to learn high-level semantic features. We

conducted extensive experiments across four neural network architectures on two

different downstream tasks to validate the proposed approach. The experimental

results demonstrated the superiority of our method on learning powerful spatio-

temporal features. Besides, the pace prediction task does not rely on any motion

channel as input/information during training. As a result, such a pace prediction

task can serve as a simple (yet effective) supervisory signal when applying the

self-supervised video representation learning in real world, taking advantage of

billions of video data on the Internet.

2 End of chapter.



Chapter 5

Conclusions and Future Work

5.1 Conclusions

In conclusion, we proposed two novel pretext tasks, spatio-temporal statistics re-

gression and video play pace prediction, conducted one systematical study on

self-supervised video representation learning in terms of backbone networks, pre-

training dataset scale and feature transferability, and adopted two learning strate-

gies, curriculum learning and contrastive learning to further improve the perfor-

mance. With these works, we introduced new perspectives, broadened previous

focuses on video order prediction and as a result, pioneered in self-supervised

video representation learning, a newly-developed and promising field. Extensive

experimental results demonstrated the feasibility of self-supervised learning to

leverage large amount of unlabeled video data. The detailed summary of each

chapter is illustrated in the following:

• Chapter 2 proposed a novel pretext task - spatio-temporal statistics regres-

sion, for self-supervised video representation learning. Specifically, given

an unlabeled video clip, a series of spatio-temporal statistical summaries

were computed, such as the spatial location and dominant direction of the

104
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largest motion, the spatial location and dominant color of the largest color

diversity along the temporal axis, etc. Then a neural network was built

and trained to yield the statistical summaries given the video frames as in-

puts. In order to alleviate the learning difficulty, several spatial partitioning

patterns were employed to encode rough spatial locations instead of exact

spatial Cartesian coordinates. This approach was inspired by the observa-

tion that human visual system is sensitive to rapidly changing contents in

the visual field, and only needs impressions about rough spatial locations

to understand the visual contents. Unlike prior works that were concen-

trated on or to some extent stuck in the video order conception, this pretext

task presented a completely new perspective for self-supervised video rep-

resentation learning. It was also the first work that used 3D convolutional

neural network to learn spatio-temporal features in a self-supervised man-

ner. A preliminary evaluation was conducted on a classic and relatively

shallow backbone network, C3D with five convolutional layers. The ex-

perimental results showed that the proposed method achieved competitive

performances. While promising results have been achieved, the potential

of the proposed method can be further explored by using a more powerful

backbone network and a much larger pre-training dataset etc.

• To get a better understanding of the proposed statistics pretext task and

further improve the performance, Chapter 3 presented an in-depth investi-

gation on the spatio-temporal statistics regression pretext task by conduct-

ing extensive experiments. The potential of the spatio-temporal statistics

was fully exploited by using a much larger dataset and some modern neural

networks. A curriculum learning strategy was also introduced to further im-

prove the representation learning. Besides, in Chapter 3, we also provided

some fundamental insights on developing self-supervised video representa-
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tion learning methods. Some key observations are listed as follows: (1) The

backbone networks architectures play an important role in self-supervised

learning. However, no best model is guaranteed for different pretext tasks.

In most cases, the combination of 2D spatial convolution and 1D temporal

convolution achieves better results. (2) Downstream task performances are

log-linearly correlated with the pre-training dataset scale. Notably, using

only 1/8 of the pre-training data can already achieve 1/2 of the improve-

ment, which suggest that Attentive selection should be given on the training

samples. (3) In addition to the main advantages of self-supervised video

representation learning, i.e., leveraging large amount of unlabeled videos,

it was demonstrated that features learned in a self-supervised manner are

more generalizable and transferable than features learned in a supervised

manner. Experimental results showed that the proposed method achieved

remarkable performances. However, this pretext task still has some limita-

tions, where the major one is the usage of pre-computed optical flow. This

is both time and space consuming, especially when the training dataset

scales to millions/trillions of videos.

• In order to overcome the major limitation of the proposed statistics pre-

text task, Chapter 4 presented a simple and effective pretext task for self-

supervised video representation learning by pace prediction. This pretext

only based on the original input videos, without referring to the optical

flow information. It stemmed from the observation that human visual sys-

tem is sensitive to video pace, e.g., slow motion, a widely used technique

in film making. Specifically, given a video played in natural pace, we ran-

domly sampled training clips in different paces and asked a neural network

to identify the pace for each video clip. The assumption here was that the

network can only succeed in such a pace reasoning task when it understands
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the underlying video content and learns representative spatio-temporal fea-

tures. In addition, we further introduced contrastive learning to push the

model towards discriminating different paces by maximizing the agreement

on similar video content. To validated the effectiveness of the proposed

method, we conducted extensive experiments on action recognition and

video retrieval tasks with several alternative network architectures. Ex-

perimental evaluations showed that our approach achieved state-of-the-art

performance for self-supervised video representation learning across differ-

ent network architectures and different benchmarks. It is also worth noting

that due to the simplicity and effectiveness of the pace prediction task,

it has various applications and could be an influential work in the future.

For example, it can be used as an auxiliary loss, a data augmentation

method, or an exemplary task for investigating the essence or principles of

self-supervised video representation learning.

5.2 Future work

Based on the findings and results illustrated in this thesis, some future directions

are listed in the following:

• The performance of self-supervised video representation learning can be

further boosted by using multi-modal data, e.g., the combination of audio

and video. Specifically, the proposed pace prediction pretext task can be

applied to any time-series signals. It would be interesting to apply this

pretext task on audio modality, i.e., ask the neural network to predict

whether the audio is played in a slow, normal or fast pace. We believe

the performance can be further improved by combing both video and audio

modality for self-supervised video representation learning.
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• It is interesting to investigate the influence of using non-curated video data

for pre-training. Current self-supervised video representation learning ap-

proaches, including works described in this thesis, are mainly pre-trained on

the large-scale dataset, kinetics-400 (K-400). The original action class la-

bels of K-400 are discarded and training labels are generated automatically

by various pretext tasks. However, essentially, K-400 is selected, cleaned,

and annotated by human beings. While in the real world, video data is

non-curated, which could be much more disorganized and chaotic. How

would the self-supervised video representation learning methods be influ-

enced by these data? Will the performance be deteriorated? If so, how can

we alleviate or solve this problem? We believe it is an interesting direction

to be explored.

• A more fundamental direction that needs to be investigated is that with

only self-supervised video representation learning, can the video content

be fully analyzed and understood? In this thesis, the motivation behind

our works are mainly inspired by human visual system. In consistent with

findings in neuroscience research, we observed that human beings under-

stand video content from multiple perspectives, such as appearance and

color, largest motion area and direction, video play pace, etc. Based on

these observations, we proposed novel pretext tasks and demonstrated the

superiority of the proposed approaches. However, analyzing video content

and recognizing the exact action class is still one key element of video un-

derstanding while in the self-supervised learning paradigm, it deliberately

discards every action class label and only uses pretext tasks to guide the fea-

ture learning. We hypothesize that the future of video representation learn-

ing lies in the combination of both supervised and self-supervised learning,

as human beings understand the visual world from multiple aspects. It will
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be interesting to take inspiration from self-supervised learning pretext tasks

and further investigate them in semi-supervised learning paradigm.

2 End of chapter.



Appendix A

Publication List

The works presented in this thesis are published/submitted in the following pa-

pers:

• Jiangliu Wang, Jianbo Jiao, Linchao Bao, Shengfeng He, Yun-Hui Liu,

and Wei Liu. “Self-supervised Spatio-temporal Representation Learning for

Videos by Predicting Motion and Appearance Statistics”. CVPR 2019.

Code：https://github.com/laura-wang/video_repres_mas

• Jiangliu Wang, Jianbo Jiao, Linchao Bao, Shengfeng He, Wei Liu, and

Yun-Hui Liu. “Self-supervised Video Reprepresentation Learning by Un-

covering Spatio-temporal Statistics”. TPAMI. Under review.

Code：https://github.com/laura-wang/video_repres_sts

• Jiangliu Wang, Jianbo Jiao, and Yun-Hui Liu. “ Self-supervised Video

Representation Learning by Pace Prediction”. ECCV 2020.

Code：https://github.com/laura-wang/video-pace

Before delving into the marvelous self-supervised learning world, I also did

some research on 3D human action recognition. The related publications are
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listed in the following:

• Jiangliu Wang and Yun-Hui Liu. “Kinematics Features for 3D Action

Recognition Using Two-Stream CNN”. WCICA 2018.

• Jiangliu Wang, Kebin Yuan, and Yun-Hui Liu. “Image coding method,

action recognition method, and computer device”. Patent WO2019120108A1

.

• Qiang Nie, Jiangliu Wang, Xin Wang, and Yun-Hui Liu. “ View-invariant

human action recognition based on a 3d bio-constrained skeleton model”.

TIP 2019.

2 End of chapter.
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