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In this paper, we consider a defense–intrusion interaction, in which an intruder is attracted
by a protected stationary target but repulsed by a defender; while the defender tries to
move towards an appropriate interception position (IP) between the intruder and the
target in order to intercept the intruder and expel the intruder away from the target as
maximum as possible. Intuitionally, to keep the intruder further away, one may wonder
that: is it a better strategy for the defender trying to approach the intruder as near as possible?
Unexpectedly and interestingly enough, this is not always the case. We first introduce the
flexibility for IP selection, then investigate the system dynamics and the stable motion pat-
terns, and characterize the phase-transition surface for the motion patterns. We show that,
the phase-transition surface just defines the optimal interception strategy of the defender
for IP selection; and from the perspective of mobility of agents, the optimal strategy just
depends on relative mobility of the two agents.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

Interaction of self-propelled agents has attracted much interest from different disciplines [1–14]. From the very start, the
focus of collective motion is on pure coordinated interactions; we call them non-conflicting interactions, since the agents
have the same role or different but non-conflicting roles (e.g., leaders and followers [4]) with non-conflicting behaviors.
In recently years, there is an emerging attention on introduction of conflicting interactions [14–31], e.g., collective pursuit–
evasion (PE). PE is first formulated by a one-to-one model [18–21], which generally describes a scenario that, a pursuer tries
to approach an evader as near as possible in order to capture it, while the evader, oppositely, tries to escape from the pursuer;
and with years of development, it has been studied with many scenarios, e.g., one-pursuer–multiple-evaders [22–23], multi-
ple-pursuers–one-evader [22–24], and multiple-pursuers–multiple-evaders with particular interest from statistical physics
[14,15,27–30]. Among which, there are three types of descriptions: the kinematics/dynamics of agents described by ordinary
differential equations [14,16,20–22,26,27]; the behaviors of agents described by discrete iterative equations [17,24]; the evo-
lution of agents that restricted on discrete lattice [25,28–30].

Motivated by while different from PE, our investigation also falls into the category of agents with conflicting interactions,
but focuses on a new and more complex type: defense–intrusion (DI) interaction, which is also ubiquitous and fascinating
both in animal world (e.g., a prey mother tries to protect her child against a predator or predators) and artificial world (e.g., a
guarded vessel tries to protect an island by preventing approach of opposed vessels). Compared with PE interactions, in DI
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interactions, intruders not merely escape from defenders but with additional intention to approach the vicinity of a pro-
tected region (or target), while defenders not merely pursue but with additional aim to expel intruders away from the target,
which is rarely investigated. As a first step, we consider one-defender–one-intruder formulation, since (1) such system with
merely two agents already shows very rich and even unexpected properties that needs a separate analysis; (2) further, the
deep understanding of the system is a good starting point with important insights for considering DI interactions of multiple
agents; and (3) the system has distinct features that are different from one-pursuer–one-evader with PE interaction that will
add new knowledge of such games of two players.

In our formulation of the DI interaction, the intruder tries to approach a protected stationary target with avoidance of the
defender, while the defender tries to expel the intruder away from the target as maximum as possible. Naturally, the strate-
gies of the agents are modelled using artificial anti-Newtonian forces [31]; here the intruder is attracted by the target but
repulsed by the defender; while the defender tries to approach an appropriate IP between the intruder and the target in
order to intercept the intruder.

Intuitionally, to keep the intruder away from the target as maximum as possible, one may wonder that: is it the better
strategy for the defender trying to approach the intruder as near as possible (i.e., selecting the IP very near the intruder), just
as behaviors of pursuers in PE? Unexpectedly, this is not always the case.

To characterize the optimal strategy of the defender, we first introduce the flexibility for IP selection, and then investigate
the stable motion patterns of the system (i.e., the synchronous–concentric–circling pattern and the stationary confrontation
pattern), and characterize a transition of the motion patterns using the phase-transition surface for different attraction/repul-
sion coefficients. Then the optimal interception strategy of the defender can be interpreted from two perspectives (i.e., the
motion-pattern–transition perspective and relative-mobility perspective), with distinct physical meanings. To be specific, (1)
the optimal strategy of the defender is just the critical condition that renders the transition between the two stable motion
patterns; (2) the optimal strategy just depends on relative mobility of two agents, e.g., when the defender’s mobility is faster
than the intruder’s mobility, then the defender has more capability to behave more aggressively (i.e., choosing the IP very
near the intruder); else, it is wise for the defender to behave conservatively; as a specific case, when the two agents have
same mobility, it is optimal to choose the IP just as the midpoint between the intruder and the target.

Analysis and quantitative simulations provide important insights into the dynamics and the defense strategy, which are
of interest for many disciplines, from biology and physics, to applied science such as control and robotics. And the results
provide a good starting point with rich insights for considering collective motion of multi-agents with defense–intrusion
interactions.

2. Problem formulation

2.1. Model

Consider two agents, one defender and one intruder, in the 2-dimensional Euclidean space, with positions of p1ðtÞ 2 R2

and paðtÞ 2 R2, respectively. The defender tries to protect a target, which is stationary and located at p0, while the intruder
tries to reach the vicinity of the target with avoidance of the defender, as illustrated in Fig. 1(a). Consider the kinematics of
the agents described by two nonlinear ordinary differential equations:
Fig. 1.
functio
_paðtÞ ¼ uaðtÞ 2 R2; _p1ðtÞ ¼ u1ðtÞ 2 R2;
where u1ðtÞ;uaðtÞ are the strategies of the defender and the intruder, respectively. For the intruder, it is natural to assume
that there is a virtual attraction from the target and a virtual repulsion from the defender, thus the feedback strategy of
the intruder is:
uaðtÞ ¼ uatt
a ðtÞ þ urep

a ðtÞ; ð1Þ
(a) Illustration of the DI, the arrows denote possible moving directions of agents. (b) Illustration of forces uaðtÞ, uatt
a ðtÞ, urep

a ðtÞ and u1ðtÞ. (c) pmðtÞ as a
n of k to characterize the selection flexibility. For clarity, the parameter t of the notations in the figures is omitted.
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where
Fig. 2.
k1 ¼ 2.
pað0Þ ¼
k ¼ 1=3
uatt
a ðtÞ ¼ �ka paðtÞ � p0Þð ; urep

a ðtÞ ¼ kr
pa tð Þ � p1 tð Þ
pa tð Þ � p1 tð Þk k2 ;
ka; kr > 0 are the attraction and repulsion coefficients, respectively, the term uatt
a ðtÞ models the attraction of the target, and

urep
a ðtÞ is the repulsion from the defender, which increases as the distance between agents shrinks.

To intercept the intruder, the defender tries to move to an IP pmðtÞ between the intruder and the target, as illustrated in
Fig. 1(b), thus the feedback strategy of the defender is:
u1ðtÞ ¼ �k1ðp1ðtÞ � pmðtÞÞ; ð2Þ
where k1 > 0. The coefficients ka and k1 can be viewed as a certain type mobility (or the negative-feedback gains) of the
defender and the intruder, respectively. Then naturally there is a question: to keep the intruder away from the target as
maximum as possible, is it a better strategy for the defender trying to approach the intruder as near as possible, i.e., selecting
pmðtÞ ! paðtÞ? Unexpectedly, this is not always the case.

2.2. Flexibility of IP selection

To characterize the flexibility for selection of pmðtÞ, we use a parameter k, and
pmðtÞ ¼ kpaðtÞ þ ð1� kÞp0; k 2 ð0;1�;
as illustrated in Fig. 1(c), in which for example, (1) when, k! 0, pmðtÞ ! p0; (2) when k ¼ 1, pmðtÞ ¼ paðtÞ; (3) as a special
case, for k ¼ 0:5, then pmðtÞ is just the midpoint between p0 and paðtÞ.

Initially, the two agents and the target are in non-collinear configuration; also refer to Remark 1 in Section 3.1.

3. Analysis

3.1. Stable motion patterns

There are two stable motion patterns: the synchronous–concentric–circling pattern, for abbreviation, Pattern I [i.e., the
agents move around the target with the same angular speed on two concentric circles respectively, refer to
Fig. 2(a) and (b) for illustration] and the stationary confrontation pattern, for abbreviation, Pattern II [i.e., the agents reach
a stationary collinear configuration, refer to Fig. 2(c) and (d) for illustration]. The initial condition has no influence on the
stable motion patterns.
(d) (e) (f)

(a) (b) (c)

Illustration of two stable motion patterns in 2D X–Y plane. (a)–(c) illustrate Pattern I, (e)–(f) illustrate Pattern II. p1ð0Þ ¼ ð�1;�2ÞT , ka ¼ 2, kr ¼ 1,
Without loss of generality, the target is located at the origin of the Cartesian Coordinates, i.e., p0 ¼ ½0;0�

T . (a) k ¼ 0:5, pað0Þ ¼ ð�2;�1ÞT . (b) k ¼ 0:5,
ð2;1ÞT . Initial positions have no effect on the stable motion patterns, except for the clockwise circling (a) or the counterclockwise circling (b). (d)
, pað0Þ ¼ ð�2;�1ÞT . (e) k ¼ 1=3, pað0Þ ¼ ð2;1Þ

T . Initial positions have no influence on values of paðtÞk kjt!1 and p1ðtÞk kjt!1 .
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Remark 1. In this paper, we do not consider the initial collinear configuration or any further actions of agents when in the
states of the stable motion patterns. For example, in Pattern II, one may think that if the defender takes further action to
approach the intruder, then the intruder will be expelled further away. This is indeed the case, but here the intruder just
behaves as an evader, which violates the scenario of DI. If further actions considered, the intruder will naturally adopt a new
strategy to approach the target while the defender will also take a new strategy, which is out of the scoop of this paper and
leads to another topic for future investigation.
3.2. Phase-transition surface

For different parameters, the system may show different stable motion patterns, and there is a phase-transition as the
parameters continuously change. Interestingly, this can be characterized elegantly by a phase-transition surface that defined
as:
Cðk; k1; kaÞ :¼ k� k1

k1 þ ka
¼ 0 ð3Þ
and Patterns I and II can be discriminated by the value of k:
k >
k1

k1 þ ka
; Pattern I

k � k1

k1 þ ka
; Pattern II

8>><
>>: ð4Þ
as illustrated in Fig. 3, for the analytic derivation, refer to Appendix A; and for numerical simulations, refer to Figs. 4–6.

3.3. Optimal IP

Then what is the optimal IP of pmðtÞ, or equivalently, the optimal value of k? To answer this question, first denote
da ¼ lim

t!1
paðtÞk k as the stable distance from the intruder to the target, which is a function of parameters k; ka; kr ; k1, i.e.,

da ¼ da k; ka; kr; k1ð Þ, we use da for abbreviation if without confusion. The defender tries to maximize da by selecting an appro-
priate k. For given ka; kr ; k1, the distance da has its maximum for certain value of k (Figs. 4–6), i.e.,
max
k2ð0;1�

da k; ka; kr ; k1ð Þ ¼ da ko; ka; kr ; k1ð Þ; ð5Þ
where ko is defined as the optimal value of k.
Distance da is an important criterion to evaluate the performance of the defender, which is a piecewise, continuous func-

tion (for derivation, refer to Appendix A) as follows:
da ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kr

kk1 � k1 þ ka

r
; k >

k1

k1 þ kaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kr

1� kð Þka
; k 6

k1

k1 þ ka

s
8>>>><
>>>>:

: ð6Þ
From Eqs. (4) and (5), we get the optimal value ko:
ko ¼
k1

k1 þ ka
: ð7Þ
Fig. 3. Illustration of the phase-transition surface from two different view angles.



(a) (b) (c)

(d) (e) (f)

Fig. 4. Illustration of da as a function of k; ka; k1, with k1 ranging from 1.6 to 4, and ka from 1 to 3, in (a)–(e) via simulation. kr ¼ 2, p1ð0Þ ¼ ð�1;�2ÞT ,
pað0Þ ¼ ð�2;�1ÞT . (a) ka ¼ 1. (b) ka ¼ 1:5. (c) ka ¼ 2. (d) ka ¼ 2:5. (e) ka ¼ 3. (f) The optimal value ko as a function of k1 and ka that derived from (a)–(e), the
circles in (f) are the simulation results while the lines are the theoretical calculations.

(a) (b) (c)

(d) (e) (f)

Fig. 5. Illustration of da as a function of k; ka; k1, with ka ranging from 0.6 to 3, and k1 from 1 to 3, in (a)-(e) via simulation. kr ¼ 2, p1ð0Þ ¼ ð�1;�2ÞT ,
pað0Þ ¼ ð�2;�1ÞT . (a) k1 ¼ 1. (b) k1 ¼ 1:5. (c) k1 ¼ 2. (d) k1 ¼ 2:5. (e) k1 ¼ 3. (f) The optimal value ko as a function of k1 and kathat derived from (a)–(e), the
circles in (f) are the simulation results while the lines are the theoretical calculations.
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(b) (c)(a)

(e) (f)(d)

Fig. 6. Illustration of da as a function of k; ka; kr ;with kr ranging from 0.6 to 3, and ka from 1 to 3, in (a)–(e) via simulation. k1 ¼ 3, p1ð0Þ ¼ ð�1;�2ÞT ,
pað0Þ ¼ ð�2;�1ÞT . (a) ka ¼ 1. (b) ka ¼ 1:5. (c) ka ¼ 2. (d) ka ¼ 2:5. (e) ka ¼ 3 (f) the optimal value ko as a function of kr and ka that derived from (a)–(e), the
circles in (f) are the simulation results while the lines are the theoretical calculations.
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da increases in k 2 ð0; ko� and decreases in k 2 ½ko;1�. Thus when k ¼ ko,
max da
k2ð0;1�

¼ dajk¼ko
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kr k1 þ kað Þ

k2
a

s
:

Then compare Eq. (6) with the phase-transition surface described by Eq. (3), we can see that the optimal value ko is just
located on the phase-transition surface. Pattern I shows that, the defender is over-aggressive, i.e., it is better to decrease k to
ko; and if Pattern II can be easily achieved, then it shows that, the defender is conservative, that is, the defender still has
potential or capability to behave more aggressively (i.e., increase k to ko).

From another perspective, the optimal strategy ko of the defender in Eq. (6) is a function of relative mobility of agents: for
example, when the mobility of the defender is much larger (i.e., k1 > ka), it is optimal to select ko � 1; when the agents have
the same mobility (i.e., k1 ¼ ka), then trying to approach the midpoint between the target and the intruder (i.e., select
ko ¼ 0:5) is the optimal choice.

Interestingly, for Pattern I, we also have:

(1) no matter what value of k, the distance between the intruder and the defender is always the constant valueffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kr=ðk1 þ kaÞ

p
[refer to Eq. (A7)], and

(2) when k! ko, then from Eq. (A8), v1=va ! ko, where va and v1 are denoted as the stable speeds of the intruder and the
defender, respectively.

4. Conclusion

In this paper, we provide and characterize the DI model, analyze the optimal interception strategy for the defender, and
illustrate two stable motion patterns with characterization of the phase-transition surface. Then we interpret the physical
meaning of the optimal interception strategy from two perspectives. The results provide important insights into collective
DI of multiple agents that will be investigated in future. The results will also provide insights into similar scenarios, for
example, to derive efficient strategies for Area Persistent Denial by autonomous vehicles.
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Fig. A. Illustration of Patten I (the left two figures) and Pattern II (the right figure). p? is the foot point of triangle p0p1pm , h is the distance between p1 and
p? , a is the distance between pm and p1; b is the distance between p? and pa; c is the distance between pa and p1.
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Appendix A

The two patterns and thus the phase-transition surface are derived as follows. First, Patten I (as illustrated in Fig. A) can be
characterized by the following equations:
va
da
¼ v1

d1
; ðA1Þ

v1 ¼ ak1; ðA2Þ
va ¼ kr

c cos h; ðA3Þ
da ¼ kr

cka
sin h; ðA4Þ

8>>>><
>>>>:
where Eq. (A1) holds since the two agents have the same angular velocity; Eq. (A2) is derived from Eq. (2); Eq. (A3) holds
since
urep
a

�� �� ¼ kr

pa � p1k k ¼
kr

c
and va ¼ urep

a

�� �� cos h;
and Eq. (A4) holds since
uatt
a

�� �� ¼ kada ¼ urep
a

�� �� cos h ¼ kr

c
sin h;
in which the parameters a, c can be solved geometrically as follows:
a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2d2

a � d2
1

q
; k2d2

a > d2
1

b ¼ da �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

1 � h2
q

¼ kd2
a�d2

1
kda

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ b2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kd2

1þkd2
a�2d2

1
k

q
h ¼ ad1

kda

8>>>>>>><
>>>>>>>:

:

Then, substitute Eqs. (A2)–(A4) to Eq. (A1) and note that cos h ¼ h=c; sin h ¼ b=c, then we have
kad2
1 ¼ kd2

a � d2
1

� �
k1; ðA5Þ
i.e.,
d2
1 ¼

kk1

k1 þ ka
d2

a : ðA6Þ
Note that k2d2
a > d2

1, for Pattern I, we get the constraint
k >
k1

k1 þ ka
:

Substitute Eqs. (A5) and (A6) to Eq. (A4), we get:
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d2
a ¼

kr

kk1 � k1 þ ka
;

v1 ¼ k1da

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1k

2 þ kak
2 � k1k

k1 þ ka

s
;

va ¼ k1da

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k� 1þ ka

k1
k

s
;

c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kr

k1 þ ka

s
; ðA7Þ

v1

va
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1k

k1 þ ka

s
: ðA8Þ
For Pattern II, the position of the defender is just located at pm, thus for the intruder, the repulsive force equals to the
attractive force, i.e.,
kada ¼
kr

ð1� kÞda
:

That is:
da ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kr

1� kð Þka

s
; k 2 0

k1

k1 þ ka

� �
:

For the phase-transition surface, note that, for Pattern I, k > k1
k1þka

, and for Pattern II, k 2 0 k1
k1þka

� i
, the result holds.
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