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Abstract— Due to the great success of convolutional neural
networks (CNN) on image classification problems, several
attempts have been made to train deep neural networks for
human action recognition problem. But since CNN is designed
for static RGB images, it is not easy for it to learn temporal
information from videos. To tackle this problem, temporal
encoded kinematics features are proposed, which compute the
linear velocity and orientation displacement based on human
skeleton data. A two-stream CNN architecture is used, incor-
porating spatial and temporal networks. The spatial ConvNet
is trained on still RGB images, while the temporal ConvNet
is trained on the proposed encoded kinematics features. We
evaluate our method on a popular and challenging 3D multi-
view human action benchmark, Northwestern-UCLA dataset.
The experiment results show that our proposed method is fast
to train and performs better when compared to traditional
handcrafted features.

I. INTRODUCTION

Human action recognition is one of the most challenging

problems in the field of computer vision and has attracted

lots of attention in recent decades [1]–[3]. The applications

of this field of research can vary from elderly caring at home

to large scale surveillance monitoring in public places.

Methods proposed to solve action recognition problem

can be roughly classified into two categories: handcrafted

feature method and deep learning method. The handcrafted

feature method extracts local features that can represent

the spatial and temporal information of human action and

then trains discriminative classifiers, such as Support Vector

Machines (SVM), to finally predict the label of different

actions. Laptev first proposed the spatial-temporal interest

points [1] method, which is one the most remarkable methods

in the early ages of investigating human action recognition.

Following the design concept of this method, more and

more effective detectors are developed [4]–[6]. They are

proposed to overcome the challenges in action recognition,

including human scale variance, light condition change, etc.

Apart from the space-time interest points method, Wang

et al. [7] propose a dense-trajectory based method. This

method samples dense points from each frame and then

tracks them based on a dense optical flow filed. A descriptor

based on motion boundary histograms is finally designed to

encode the trajectory information. And the authors further

improved this work by considering the camera motion [8].

SURF descriptors and dense optical flow are used to match
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feature points between frames to estimate camera motion.

And finally the camera motion is canceled out from the

trajectories. The dense-trajectory based method is proved

to be the most successful handcrafted method and achieves

the state-of-art recognition result among all the handcrafted

methods.

Deep learning has achieved impressive results on image

classification [9] and object detection [10]. Several attempts

have been made to apply deep learning for action recognition.

The deep learning method is an end-to-end method, which

automatically extracts action representation using deep neu-

ral networks. There are mainly two popular neural network

architectures: 3D CNNs [11]–[13] and two-stream CNNs [2],

[14], [15]. Inspired by the traditional 2D CNNs for single

image classification, 3D CNNs extend it to 3D convolution

layers and 3D pooling layers to extract spatial-temporal

representation. But this network architecture itself is usually

hard to train and thus too shallow to learn powerful rep-

resentations. Two-stream CNNs do better when concerning

performance on public benchmarks. The idea of this method

comes from two-stream hypothesis proposed by neurologists

[2]. It is reported that human visual system consists of two

pathways: the ventral stream to recognize still object and

the dorsal stream to recognize motion. To imitate such a

visual system, the two-stream CNN method first trains two

convolution neural networks on RGB images and stacked

optical flow, respectively and then fuses these two networks

to get the final classification results. One drawback of this

method is that the computation of the optical flow is quite

time-consuming.

Due to the advent of low-cost and real-time depth sensors,

such as kinect, the problem of human pose estimation

becomes much more easier. Shotton proposed a real time

pose estimation method that can predict the 3D coordinates

of human skeletons accurately from one single depth image

[16]. And the method is adopted in the kinect sensor. Since

then, action recognition research based on skeleton data

has attracted more and more interests [17]–[19]. Traditional

powerful CNN method is not suitable for this problem since

it requires image as input while the skeleton data is only

sequence of numbers. To solve this problem, recurrent neural

network(RNN) is adopted to learn action representation

from skeleton data, which is originally designed for natural

language processing. Compared to RGB image, skeleton

data is more robust to view, appearance and light condition

variation. And it is fast to process since human pose can be

described by 20 or 25 joints. But when concerning human-

object interaction, only skeleton data itself is not sufficient

to distinguish different actions. And also the RNNs method
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emphasizes too much on the temporal information while pays

little attention to the spacial information, which could also

lead to worse classification performance.

In this paper, we tackle the action recognition problem

by capturing the complementary information on appearance

from RGB data and motion from skeleton data using a two-

stream CNN. Encoded kinematics features, which compute

linear velocity and orientation displacement of human joints,

are proposed to represent the temporal information based on

the original skeleton data. These encoded kinematics features

make it possible to train a temporal CNN and finally be fused

with a spatial CNN. Our proposed method is validated on the

Northwestern-UCLA dataset, which is a challenging multi-

view RGB-D human action dataset [23]. Experiment results

show that although these features are quite simple, they are

fast to train and could achieve better performance than many

handcrafted features.

The main contribution of this paper lies in three as-

pects: (1) kinematics features, including linear velocity and

orientation displacement, are proposed to represent human

action effectively; (2) an image encoding method is designed

to make use of the power of CNN for action recognition

based on skeleton data; (3) a key frame selection scheme is

proposed to fit actions with different frame length into same

image size for training.

The organization of this paper is described as follows. In

section 2, we present how to generate the encoded kinematics

features, including kinematics features extraction and image

encoding. The neural network architecture is described in

section 3. To evaluate our proposed method, a variety of

experimental results are presented in section 4. Finally, we

summarize our work in section 5.

II. ENCODED KINEMATICS FEATURES

CNN expects images as inputs. However, human skeleton

data only provides 3D coordinates of each joint, which could

not be fed into CNN directly. To solve this problem, we

propose a novel method that can encode joint positions

into 3-channel color images. The proposed method consists

of two steps: (1): extract kinematics features from input

skeleton sequences; (2): encode kinematics features into

RGB images.

A. Kinematics Features Extraction

We adopt a typical human skeleton model with 20 joints,

which can be tracked by kinect sensor v1. Similar to optical

flow of the original two stream CNN, positions displace-

ment, i.e., linear velocity and orientation displacement are

investigated based on the 20 skeleton joints.

For an action video with N frames, at frame t, the 3D

coordinates of the joint i can be obtained from human pose

estimation [16]:

PPPi
t = (px, py, pz), i = [1;20], t = [1;N]. (1)

The linear velocity of joint i at frame t is computed

between itself and its following frame t +1:

Fig. 1. Visualization of linear velocity computed from action pick up in
the Northwestern-UCLA dataset.

vvvi
t = PPPi

t+1 −PPPi
t , i = [1;20], t = [1;N −1]. (2)

To visualize the linear velocity more intuitively, the start-

ing point of vector vvvi
t is put at PPPi

t , as shown in Fig 1.

The orientation displacement capture the angle variation

of each joint. Given the 3D coordinates PPPi
t of joint i at frame

t , the corresponding orientation can be computed as:
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(3)

The orientation displacement of joint i at frame t is computed

between itself and its following frame t +1:

ωωω i
t = ΦΦΦi

t+1 −ΦΦΦi
t , i = [1;20], t = [1;N −1]. (4)

The visualization of orientation displacement is shown in

Fig. 2

Note that a feature with more physical meaning is angular

velocity of each body part, which can be illustrated as

follows:

v1 = v2 +ω × r. (5)

But three points are needed to compute the final angular ve-

locity, which could not be achieved given only the positions

of two joints.

B. Image Encoding

To feed the kinematics features into CNN, we need to

encode these feature numbers into RGB images. Given

an action video with N frames, after kinematics feature

extraction, linear velocity VVV and orientation displacement ΦΦΦ
are computed into (N−1)×20×3 matrix respectively, which

just well suits the three channels RGB images with height

N −1 and width 20.
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Fig. 2. Visualization of orientation displacement computed from action
pick up in the Northwestern-UCLA dataset.

Fig. 3. Encoded linear velocity of two actions in the Northwestern-UCLA
dataset. (a) pick up action; (b) sit down action.

Normalize all feature values to lie between 0 and 255

using:

Xnorm =
X −min(X)

max(X)−min(X)
×255 (6)

where min(X) computes the minimum value of linear ve-

locity or orientation displacement and max(X) computes

the maximum. Fig. 3 shows the encoded linear velocity of

action pick up and action sit down from Northwestern-UCLA

dataset. Note that the images are not presented in a low-

resolution, but just the encoding output. The x, y, z channel

images show the linear velocity in x, y, z axis, respectively.

We use pseudo-color to show it in a more clear way, but in

fact, they are gray image since all of the values lie between

0 and 255.

III. NETWORK ARCHITECTURE

The scheme of the proposed two stream CNN based on

RGB and skeleton data is shown as Fig 4. It follows the

basic framework of the original two stream CNN, with one

CNN trained on RGB data and the other trained on encoded

kinematics features. Each stream is implemented using a

deep ConvNet and their softmax scores are combined by

late fusion. Spatial stream ConvNet operates on individual

RGB frames, whilst temporal stream ConvNet operates on

encoded kinematics features computed from skeleton data.

A VGG-16 like CNN is used as the layer configuration for

both spatial and temporal ConvNet.

A. Spatial ConvNet

When training the still RGB images, we use a pre-trained

model VGG16, which is a convolutional neural network

model proposed by K. Simonyan and A. Zisserman from

the University of Oxford [2]. The model is one of the

most popular and successful network architecture on image

classification problem, achieving 92.7% top-5 test accuracy

in ImageNet [9] challenge.

VGG 16 expects 224 x 224 pixel RGB images as input

and subtracts the mean image values, calculated over the

entire ImageNet training set, from each image. It is a very

deep network with a lot of convolution layer followed by

max-pooling, reducing the dimensionality. The key feature

of VGG16 is that each convolution layer performs 3x3

convolutions with stride 1 and pad 1, after which the image

dimensionality remains the same. And each max-pooling

layer performs with stride 2, pad 0, which reduces the image

size in half.

When using VGG 16 to train RGB-D action datasets, we

don’t train from scratch since the data size is quite small,

and may lead to over-fitting problem. Instead, we fine-tune

the pretrained model on ILSVRC-2012. By fine-tuning, we

mean that replace and retrain the classifier on top of the

ConvNet on the new dataset, and fine-tune the weights of the

pretrained network by continuing the backpropagation. And

since in the last three fully convolutional layers, parameters

are 7×7×512×4096 = 102,760,448 (fc1), 4096×4096 =
16,777,216 (fc2), and 4096×1000 = 4,096,000 (fc3), it is

much easy to be over-fitting. To address this problem, we

add drop-out layer [20] after each fully convolutional layer.

B. Temporal ConvNet

As illustrated before, the original VGG 16 ConvNet

expects 224 x 224 pixel color images. However, for our

encoded kinematics features, image size is (N−1)×20×3 ,

which is much smaller than the expected input size. Simple

resize operation on encoded kinematics features could distort

the original images and add more noise.

Inspired by another popular image classification dataset-

CIFAR-10 dataset [21], which consists of 60000 32x32 tiny

color images in 10 classes, we found that the VGG 16

network also works well and achieves 92.4% top-1 test ac-

curacy [22]. Therefore, image transformation of the original
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Fig. 4. Scheme of proposed two stream CNN based on RGB and skeleton data.

(N − 1)× 20× 3 images is needed to achieve 32× 32× 3

images.

The image transformation is processed in two steps

and is operated on image rows (N − 1) and columns (20),

respectively:

1. Key Frames Selection

Typically, an action consists of 40 60 frames, among which

some of the frames are more informative. We try to select

32 key frames of each action, which not only well suits the

expected input size, but also reduce the computational cost

in training and testing. Given an action with frames N, linear

velocity and orientation displacement can be computed into

(N−1)×20×3 images. To select the key frames, we propose

a energy function of row i described in the following:

Ei =
20

∑
j=1

‖v j
i ‖

2
, i = [1;N −1], or

Ei =
20

∑
j=1

‖ω j
i ‖

2
, i = [1;N −1],

(7)

for linear velocity and orientation displacement, respectively.

Define the derivative of energy function with respect to

frame i is δEi = Ei+1 −Ei, then frame i is more informative

if the absolute value of δEi is larger. Based on the absolute

value of δEi, we pick up the biggest 32 frames. One

example is shown in Fig. 5.

2. Zero-padding

For images with 20 columns and less than 32 rows, we just

pad the image left and right with 0 to achieve the expected

input size.

The architecture of the VGG 16 and input size of spatial

and temporal convnet in each layer is shown in the Table 1.

By “/2”, it means that after max-pooling layer, the input size

is halved.

Fig. 5. Key frame selection of action pick up in the Northwestern-UCLA
dataset.

IV. EXPERIMENT RESULTS

The proposed method is evaluated on North-western

UCLA dataset [23]. This dataset contains RGB, depth and

human skeleton data captured simultaneously by three kinect

cameras. It includes 10 action categories and each action is

performed by 10 actors, with around 150 samples per class.

There are two types of protocols for evaluation of methods,

cross-view and cross-subject. In cross-view protocol, view

1 and 2 are used for training an view 3 is for testing. In

cross-subject protocol, subject 1 9 are used for training and

subject 10 is for testing.

Pytorch was adopted as the CNN platform and two

NVIDIA 1080Ti were used to run the experiment.

A. Performance of Encoded Kinematics Features

First, we measure the performance of our proposed en-

coded kinematics features, linear velocity and orientation

displacement, individually. Both the cross-view and cross-

subject protocols are considered. We also train on the spatial

ConvNet on RGB frames, which will be used in the later

fusion.

For the spatial ConvNet, we fine-tune the pretrained model

VGG16, and subtract the mean image value of ImageNet

dataset. For the temporal ConvNet, we train the VGG-16
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TABLE I

INPUT SIZE OF SPATIAL AND TEMPORAL CONVNET OF EACH VGG16

LAYER

Model Architecture Input Size Input Size
(VGG16) (Spatial convNet) (Temporal ConvNet)

3×3, 64
3×3, 64 224×224×3 32×32×3

2×2 max-pooling, /2

3×3, 128
3×3, 128 112×112×64 16×16×64

2×2 max-pooling, /2

3×3, 256
3×3, 256
3×3, 256 56×56×128 8×8×128

2×2 max-pooling, /2

3×3, 512
3×3, 512
3×3, 512 28×28×256 4×4×256

2×2 max-pooling, /2

3×3, 512
3×3, 512
3×3, 512 14×14×512 2×2×512

2×2 max-pooling, /2

full6, 128
full7, 128 7×7×512 1×1×512
softmax

like network from scratch, and subtract the mean image

value of linear velocity data and orientation displacement

data, respectively. In case of overfitting, we add two drop-

out layer after each fully-connected layer with ratio 0.9.

From the results, presented in Table 2, it is clear that our

proposed encoded kinematics features, both linear velocity

and orientation displacement, perform much better than the

RGB frames. And as expected, the RGB images is more

sensitive to view-change that in the cross-view protocol,

its recognition accuracy is 3.2% less than the cross-subject

protocol. But for our skeleton-based kinematics features, the

accuracy of cross-view protocol even increased when com-

pared with cross-subject one. And besides, the orientation

displacement feature works better than the linear velocity,

with 5% increase of the accuracy, although the later one has

more physical meaning.

Note that the spatial ConvNet takes 8 hours to train with

2 1080ti GPU, while the temporal ConvNet only takes 20

minutes to train using the same GPUs.

B. Performance of Key Frame Selection

Next we evaluate our proposed key frame selection

method. Two setting are considered: (1) use key frame selec-

tion method to select 32 more informative frames based on

the derivative of the energy function, and (2) randomly select

TABLE II

DIFFERENT INPUT ACCURACY ON NORTHWESTERN-UCLA DATASET

Input configuration Cross-subject Cross-view
Linear

Encoded Velocity 63.9% 64.4%
Kinematics Features Orientation

Displacement 68.9% 69.5%
RGB frames 54.4% 51.2%

32 frames from the initial skeleton sequences. Performance

of these two settings are presented in Table 3. We can

tell from the results that the key frame selection method

improves the performance of both cross-view and cross-

subject protocol, but the improvement is not so remarkable

when compared the improvement of temporal ConvNet to

spatial ConvNet. This could because that normally, each

action just contains 40 60 frames, so that randomly select 32

frames or delicately select will not make much difference.

TABLE III

PERFORMANCE OF ENCODED KINEMATICS FEATURES WITH AND

WITHOUT KEY FRAME SELECTION

Input configuration
Key frame selection

off on
Linear Velocity cross-subject 62.5% 63.9%
Linear Velocity cross-view 63.1% 64.4%

Orientation Displacement cross-subject 67.6% 68.9%
Orientation Displacement cross-view 68.4% 69.5%

C. Comparison with Handcrafted Features

Based on the results before, we finally fused the spatial

ConvNet trained on RGB images and the temporal ConvNet

trained on encoded orientation displacement features. We

adopt the average fusion method described in two stream

CNN [2]. And the comparison between our method and other

popular handcrafted features is shown in the following table.

Our proposed method beats most of the handcrafted features,

such as CVP, HON4D and SNV.

TABLE IV

COMPARISON OF DIFFERENT HANDCRAFTED FEATURES WITH OUR

METHOD

Method Recognition accuracy
CCD [24] 34.4%
DVV [25] 52.1%
CVP [26] 53.5%

HON4D [27] 39.9%
SNV [28] 42.9%

Our method 75.6%

V. CONCLUSIONS

We have presented a novel framework to combine the

traditional handcrafted feature method with deep learning

method. Kinematics features, including linear velocity and

orientation displacement, are proposed to capture the tem-

poral information of human action. We have introduced a
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novel image encoding method to allow CNN training on

the proposed kinematics features. Key frame selection is

proposed to guarantee the same input size of CNN. We

evaluate our method on a popular and challenging multi-

view data and the experiment results show that our proposed

method is fast to train and outperforms many handcrafted

features.
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